Skip to main content
Log in

IL26 modulates cytokine response and anti-TNF consumption in Crohn’s disease patients with bacterial DNA

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Interleukin IL26 supports killing of microbes and the innate sensing of bacterial-derived DNA (bactDNA). We evaluated the relationship between IL26 serum levels and bactDNA translocation in Crohn’s disease (CD). We ran a prospective study on CD patients in remission. IL26 common polymorphisms, serum cytokines and complement protein, amplified-bactDNA, and anti-TNF-α were evaluated. In vitro PBMC analysis was performed. Three hundred and thirteen patients were included (mean CDAI: 83.6 ± 32.8; mean fecal calprotectin: 55.4 ± 35.3 μg/g). A total of 106 patients (33.8%) showed bactDNA and 223 patients (71%) had a varIL26 genotype. BactDNA significantly correlated with increased IL26 levels compared with bactDNA-negative patients. PBMCs from varIL26 patients significantly reduced E. coli killing capacity compared with wtIL26-genotyped patients. The stimulation with a recombinant IL26 protein reduced pro-inflammatory cytokines in response to E. coli in the varIL26 cell supernatants. Serum anti-TNF-α levels in varIL26 vs wtIL26-genotyped patients on biologics were significantly lower in the presence of bactDNA. Cells from varIL26 vs wtIL26-genotyped patients cultured with E. coli DNA and infliximab showed a significant decrease in free anti-TNF-α concentration. A varIL26 genotype was associated with the initiation of anti-TNF-α in CD patients during the 6-month follow-up. IL26 polymorphisms may prevent bactDNA clearance and identify CD patients with a worse inflammatory evolution and response to therapy.

Key messages

  • BactDNA translocation in CD is associated with an increased risk of relapse.

  • IL26 is sensitive to bactDNA and modulates the inflammatory response in CD patients.

  • The varIL26 genotype is associated with reduced PMN capacity to kill bacteria.

  • A varIL26 genotype is associated with decreased levels of anti-TNF-α in CD patients.

  • IL26 may help explain the role of bactDNA as a risk factor of flare in CD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gutierrez A, Frances R, Amoros A, Zapater P, Garmendia M, Ndongo M, Cano R, Jover R, Such J, Perez-Mateo M (2009) Cytokine association with bacterial DNA in serum of patients with inflammatory bowel disease. Inflamm Bowel Dis 15:508–514

    Article  PubMed  Google Scholar 

  2. Gutierrez A, Holler E, Zapater P, Sempere L, Jover R, Perez-Mateo M, Schoelmerich J, Such J, Wiest R, Frances R (2010) Antimicrobial peptide response to blood translocation of bacterial DNA in Crohn's disease is affected by NOD2/CARD15 genotype. Inflamm Bowel Dis 17(8):1641-1650

  3. Elson CO, Cong Y, McCracken VJ, Dimmitt RA, Lorenz RG, Weaver CT (2005) Experimental models of inflammatory bowel disease reveal innate, adaptive, and regulatory mechanisms of host dialogue with the microbiota. Immunol Rev 206:260–276

    Article  PubMed  Google Scholar 

  4. Obermeier F, Dunger N, Strauch UG, Hofmann C, Bleich A, Grunwald N, Hedrich HJ, Aschenbrenner E, Schlegelberger B, Rogler G et al (2005) CpG motifs of bacterial DNA essentially contribute to the perpetuation of chronic intestinal inflammation. Gastroenterology 129:913–927

    Article  CAS  PubMed  Google Scholar 

  5. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429

    Article  CAS  PubMed  Google Scholar 

  6. Sartor RB (1997) Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol 92:5S–11S

    CAS  PubMed  Google Scholar 

  7. Abraham C, Medzhitov R (2011) Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 140:1729–1737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gutierrez A, Scharl M, Sempere L, Holler E, Zapater P, Almenta I, Gonzalez-Navajas JM, Such J, Wiest R, Rogler G et al (2014) Genetic susceptibility to increased bacterial translocation influences the response to biological therapy in patients with Crohn's disease. Gut 63:272–280

    Article  CAS  PubMed  Google Scholar 

  9. Gutierrez A, Zapater P, Juanola O, Sempere L, Garcia M, Laveda R, Martinez A, Scharl M, Gonzalez-Navajas JM, Such J et al (2016) Gut bacterial DNA translocation is an independent risk factor of flare at short term in patients with Crohn's disease. Am J Gastroenterol 111:529–540

    Article  CAS  PubMed  Google Scholar 

  10. Calderon-Gomez E, Bassolas-Molina H, Mora-Buch R, Dotti I, Planell N, Esteller M, Gallego M, Marti M, Garcia-Martin C, Martinez-Torro C et al (2016) Commensal-specific CD4(+) cells from patients with Crohn's disease have a T-helper 17 inflammatory profile. Gastroenterology 151(489–500):e483

    Google Scholar 

  11. Gaffen SL, Jain R, Garg AV, Cua DJ (2014) The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol 14:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dambacher J, Beigel F, Zitzmann K, De Toni EN, Goke B, Diepolder HM, Auernhammer CJ, Brand S (2009) The role of the novel Th17 cytokine IL26 in intestinal inflammation. Gut 58:1207–1217

    Article  CAS  PubMed  Google Scholar 

  13. Sheikh F, Baurin VV, Lewis-Antes A, Shah NK, Smirnov SV, Anantha S, Dickensheets H, Dumoutier L, Renauld JC, Zdanov A et al (2004) Cutting edge: IL26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J Immunol 172:2006–2010

    Article  CAS  PubMed  Google Scholar 

  14. Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G, Ganguly D, Conrad C, Gregorio J, Le Roy D, Roger T et al (2015) TH17 cells promote microbial killing and innate immune sensing of DNA via interleukin 26. Nat Immunol 16:970–979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, Higgins PD, Wehkamp J, Feagan BG, Yao MD, Karczewski M et al (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61:1693–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Silverberg MS, Cho JH, Rioux JD, McGovern DP, Wu J, Annese V, Achkar JP, Goyette P, Scott R, Xu W et al (2009) Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet 41:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Padua D, Mahurkar-Joshi S, Law IK, Polytarchou C, Vu JP, Pisegna JR, Shih D, Iliopoulos D, Pothoulakis C (2016) A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. Am J Physiol Gastrointest Liver Physiol 311:G446–G457

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vandenbroeck K, Cunningham S, Goris A, Alloza I, Heggarty S, Graham C, Bell A, Rooney M (2003) Polymorphisms in the interferon-gamma/interleukin-26 gene region contribute to sex bias in susceptibility to rheumatoid arthritis. Arthritis Rheum 48:2773–2778

    Article  CAS  PubMed  Google Scholar 

  19. Sands BE (2004) From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. Gastroenterology 126:1518–1532

    Article  PubMed  Google Scholar 

  20. Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA et al (2015) A global reference for human genetic variation. Nature 526:68–74

    Article  Google Scholar 

  21. Silverberg MS, Satsangi J, Ahmad T, Arnott ID, Bernstein CN, Brant SR, Caprilli R, Colombel JF, Gasche C, Geboes K et al (2005) Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a working party of the 2005 Montreal world congress of gastroenterology. Can J Gastroenterol 19(Suppl A):5–36

    Article  Google Scholar 

  22. Frances R, Benlloch S, Zapater P, Gonzalez JM, Lozano B, Munoz C, Pascual S, Casellas JA, Uceda F, Palazon JM et al (2004) A sequential study of serum bacterial DNA in patients with advanced cirrhosis and ascites. Hepatology 39:484–491

    Article  CAS  PubMed  Google Scholar 

  23. Frances R, Gonzalez-Navajas JM, Zapater P, Munoz C, Cano R, Pascual S, Marquez D, Santana F, Perez-Mateo M, Such J (2007) Bacterial DNA induces the complement system activation in serum and ascitic fluid from patients with advanced cirrhosis. J Clin Immunol 27:438–444

    Article  PubMed  Google Scholar 

  24. Gutierrez A, Holler E, Zapater P, Sempere L, Jover R, Perez-Mateo M, Schoelmerich J, Such J, Wiest R, Frances R (2011) Antimicrobial peptide response to blood translocation of bacterial DNA in Crohn's disease is affected by NOD2/CARD15 genotype. Inflamm Bowel Dis 17:1641–1650

    Article  PubMed  Google Scholar 

  25. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411:603–606

    Article  CAS  PubMed  Google Scholar 

  26. Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, Almer S, Tysk C, O'Morain CA, Gassull M et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411:599–603

    Article  CAS  PubMed  Google Scholar 

  27. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057

    Article  CAS  PubMed  Google Scholar 

  28. de Beaucoudrey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M, Feinberg J, von Bernuth H, Samarina A, Janniere L et al (2008) Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med 205:1543–1550

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mak TW, Saunders ME (2011) Innate ImmunityPrimer to the immune response Elsevier. The Netherlands, Amsterdam, pp 41–58

    Google Scholar 

  30. Fasci Spurio F, Aratari A, Margagnoni G, Doddato MT, Papi C (2012) Early treatment in Crohn's disease: do we have enough evidence to reverse the therapeutic pyramid? J Gastrointestin Liver Dis 21:67–73

    PubMed  Google Scholar 

  31. Rogler G (2013) Top-down or step-up treatment in Crohn’s disease? Dig Dis 31:83–90

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Asociación Española de Gastroenterología. J.H.N is supported by the Swiss National Foundation (SNSF 310030_146290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Francés.

Ethics declarations

The Ethics Committee of Hospital General Universitario de Alicante approved the study protocol.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Paula Piñero and Oriol Juanola are first authors

Electronic supplementary material

ESM 1

(PDF 2.21 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piñero, P., Juanola, O., Gutiérrez, A. et al. IL26 modulates cytokine response and anti-TNF consumption in Crohn’s disease patients with bacterial DNA. J Mol Med 95, 1227–1236 (2017). https://doi.org/10.1007/s00109-017-1585-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-017-1585-6

Keywords

Navigation