Skip to main content
Log in

Inhibitory effects of fenofibrate on apoptosis and cell proliferation in human endothelial cells in high glucose

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Fenofibrate has beneficial effects on the progression and clinical emergence of atherosclerosis in normoglycemic and in diabetic patients. Given the involvement of endothelium in these processes, we speculated that fenofibrate may influence endothelial cell apoptosis and proliferation, regulators of endothelium integrity. Fenofibrate effects on apoptosis and proliferation were studied in human umbilical vein endothelial cells under normal (5.5 mmol/l, NG) and high (22 mmol/l, HG) glucose with or without fenofibrate (50 μmol/l). Apoptosis was evaluated by annexin V, by poly(ADP-ribose) polymerase protein cleavage, and cyclooxygenase-2 (COX-2), Bax/Bcl-2, and p53 protein levels; proliferation was assessed by determining cell cycle phase distribution and the amounts of the cell cycle regulators E2F1, cyclin D1, E1, and A and the levels of the hyper-phosphorylated form of the retinoblastoma protein (ppRb). HG resulted in increased (p < 0.05) apoptosis rate associated with COX-2 protein overexpression, without modification of Bax/Bcl2 ratio and p53 levels. Fenofibrate decreased apoptosis and normalized increased COX-2 expression in HG (p < 0.05). Both in HG and NG, fenofibrate dramatically reduced cell proliferation (p < 0.05) through a G1/G0 block mediated by the reduction in ppRb and the decrease in E2F1, cyclin E1, A, and D1 protein expression, with a mechanism that, for cyclin E1, occurred at the posttranscriptional level. In conclusion, our data show that fenofibrate reduces apoptosis caused by HG but severely interferes with endothelial cell proliferation both in NG and HG. The resulting effect may influence endothelium integrity in vivo and may impact the outcome of acute complications of atherosclerosis in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tsimihodimos V, Miltiadous G, Daskalopoulou SS, Mikhailidis DP, Elisaf MS (2005) Fenofibrate: metabolic and pleiotropic effects. Curr Vasc Pharmacol 3:87–98

    Article  PubMed  CAS  Google Scholar 

  2. Calkin AC, Cooper ME, Jandeleit-Dahm KA, Allen TJ (2006) Gemfibrozil decreases atherosclerosis in experimental diabetes in association with a reduction in oxidative stress and inflammation. Diabetologia 49:766–774

    Article  PubMed  CAS  Google Scholar 

  3. Marx N, Sukhova GK, Collins T, Libby P, Plutzky J (1999) PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 99:3125–3131

    PubMed  CAS  Google Scholar 

  4. Staels B, Koenig W, Habib A, Merval R, Lebret M, Torra IP, Delerive P, Fadel A, Chinetti G, Fruchart JC, Najib J, Maclouf J, Tedgui A (1998) Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 393:790–793

    Article  PubMed  CAS  Google Scholar 

  5. Effect of fenofibrate on progression of coronary-artery disease in type-2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomized study (2001) Lancet 357:905–910

  6. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesaniemi YA, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ehnholm C, Laakso M (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861

    Article  PubMed  CAS  Google Scholar 

  7. Playford DA, Watts GF, Best JD, Burke V (2002) Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am J Cardiol 90:1254–1257

    Article  PubMed  CAS  Google Scholar 

  8. Bombeli T, Schwartz BR, Harlan JM (1999) Endothelial cells undergoing apoptosis become proadhesive for nonactivated platelets. Blood 93:3831–3838

    PubMed  CAS  Google Scholar 

  9. Durand E, Scoazec A, Lafont A, Boddaert J, Al Hajzen A, Addad F, Mirshahi M, Desnos M, Tedgui A, Mallat Z (2004) In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109:42503–2506

    Article  PubMed  CAS  Google Scholar 

  10. Isner JM, Kearney M, Bortman S, Passeri J (1995) Apoptosis in human atherosclerosis and restenosis. Circulation 91:2703–2711

    PubMed  CAS  Google Scholar 

  11. Rossi ML, Marziliano N, Merlini PA, Bramucci E, Canosi U, Belli G, Parenti DZ, Mannucci PM, Ardissino D (2004) Different quantitative apoptotic traits in coronary atherosclerotic plaques from patients with stable angina pectoris and acute coronary syndromes. Circulation 110:1767–1773

    Article  PubMed  Google Scholar 

  12. Ho FM, Lin WW, Chen BC, Chao CM, Yang CR, Lin LY, Lai CC, Liu SH, Liau CS (2006) High glucose-induced apoptosis in human vascular endothelial cells is mediated through NF-kappaB and c-Jun NH2-terminal kinase pathway and prevented by PI3K/Akt/eNOS pathway. Cell Signal 18:391–399

    Article  PubMed  CAS  Google Scholar 

  13. Ho FM, Liu SH, Liau CS, Huang PJ, Lin-Shiau SY (2000) High glucose-induced apoptosis in human endothelial cells is mediated by sequential activations of c-Jun NH(2)-terminal kinase and caspase-3. Circulation 101:2618–2624

    PubMed  CAS  Google Scholar 

  14. Ido Y, Carling D, Ruderman N (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51:159–167

    Article  PubMed  CAS  Google Scholar 

  15. Piconi L, Quagliaro L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A (2006) Constant and intermittent high glucose enhances endothelial cell apoptosis through mitochondrial superoxide overproduction. Diabetes Metab Res Rev 22:198–203

    Article  PubMed  CAS  Google Scholar 

  16. Sheu ML, Ho FM, Yang RS, Chao KF, Lin WW, Lin-Shiau SY, Liu SH (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 25:539–545

    Article  PubMed  CAS  Google Scholar 

  17. Stempien-Otero A, Karsan A, Cornejo CJ, Xiang H, Eunson T, Morrison RS, Kay M, Winn R, Harlan J (1999) Mechanisms of hypoxia-induced endothelial cell death. Role of p53 in apoptosis. J Biol Chem 274:8039–8045

    Article  PubMed  CAS  Google Scholar 

  18. Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, Yamazaki K, Nakabayashi M, Ogihara T, Kaneda Y (2001) Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension 38:48–55

    PubMed  CAS  Google Scholar 

  19. Varet J, Vincent L, Mirshahi P, Pille JV, Legrand E, Opolon P, Mishal Z, Soria J, Li H, Soria C (2003) Fenofibrate inhibits angiogenesis in vitro and in vivo. Cell Mol Life Sci 60:810–819

    Article  PubMed  CAS  Google Scholar 

  20. Meissner M, Stein M, Urbich C, Reisinger K, Suske G, Staels B, Kaufmann R, Gille J (2004) PPARalpha activators inhibit vascular endothelial growth factor receptor-2 expression by repressing Sp1-dependent DNA binding and transactivation. Circ Res 94:324–332

    Article  PubMed  CAS  Google Scholar 

  21. Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756

    Article  PubMed  CAS  Google Scholar 

  22. Adkins JC, Faulds D (1997) Micronised fenofibrate: a review of its pharmacodynamic properties and clinical efficacy in the management of dyslipidaemia. Drugs 54:615–633

    Article  PubMed  CAS  Google Scholar 

  23. Grassi G, Schneider A, Engel S, Racchi G, Kandolf R, Kuhn A (2005) Hammerhead ribozymes targeted against cyclin E and E2F1 co-operate to down regulate coronary smooth muscle cells proliferation. J Gene Med 7:1223–1234

    Article  PubMed  CAS  Google Scholar 

  24. Goergen JL, Marc A, Engasser JM (1993) Determination of cell lysis and death kinetics in continuous hybridoma cultures from the measurement of lactate dehydrogenase release. Cytotechnology 11:189–195

    Article  PubMed  CAS  Google Scholar 

  25. Zavrski I, Jakob C, Schmid P, Krebbel H, Kaiser M, Fleissner C, Rosche M, Possinger K, Sezer O (2005) Proteasome: an emerging target for cancer therapy. Anticancer Drugs 16:475–481

    Article  PubMed  CAS  Google Scholar 

  26. Zanetti M, Zwacka R, Engelhardt J, Katusic Z, O’Brien T (2001) Superoxide anions and endothelial cell proliferation in normoglycemia and hyperglycemia. Arterioscler Thromb Vasc Biol 21:195–200

    PubMed  CAS  Google Scholar 

  27. Hwang HC, Clurman BE (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24:2776–2786

    Article  PubMed  CAS  Google Scholar 

  28. Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ (2001) Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294:173–177

    Article  PubMed  CAS  Google Scholar 

  29. Cosentino F, Eto M, De Paolis P, van der LB, Bachschmid M, Ullrich V, Kouroedov A, Delli GC, Joch H, Volpe M, Luscher TF (2003) High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107:1017–1023

    Article  PubMed  CAS  Google Scholar 

  30. Lim JW, Kim H, Kim KH (2001) Nuclear factor-kappaB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab Invest 81:349–360

    PubMed  CAS  Google Scholar 

  31. Goetze S, Eilers F, Bungenstock A, Kintscher U, Stawowy P, Blaschke F, Graf K, Law RE, Fleck E, Grafe M (2002) PPAR activators inhibit endothelial cell migration by targeting Akt. Biochem Biophys Res Commun 293:1431–1437

    Article  PubMed  CAS  Google Scholar 

  32. Gizard F, Amant C, Barbier O, Bellosta S, Robillard R, Percevault F, Sevestre H, Krimpenfort P, Corsini A, Rochette J, Glineur C, Fruchart JC, Torpier G, Staels B (2005) PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. J Clin Invest 115:3228–3238

    Article  PubMed  CAS  Google Scholar 

  33. Grana X, Garriga J, Mayol X (1998) Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17:3365–3383

    Article  PubMed  Google Scholar 

  34. Ohtani K, DeGregori J, Nevins JR (1995) Regulation of the cyclin E gene by transcription factor E2F1. Proc Natl Acad Sci U S A 92:12146–12150

    Article  PubMed  CAS  Google Scholar 

  35. Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE, Roberts JM (2003) Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 12:381–392

    Article  PubMed  CAS  Google Scholar 

  36. Maisel WH (2007) Unanswered questions: drug-eluting stents and risk of late thrombosis. N Engl J Med 356:981–984

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr A. Semolic and Dr C. Zennaro for skillfull technical assistance. This work was supported in part by grants to G.G. (Fondazione Cassa di Risparmio of Trieste”, “Fondazione Sostegno delle Strutture Cardiovascolari, Mirano”, “Fondazione Benefica Kathleen-Foreman Casali of Trieste), by Fondo Trieste 2006. G.G. is supported by the program “Rientro cervelli” art. 1 DM n.13, MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca Scientifica”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michela Zanetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zanetti, M., Stocca, A., Dapas, B. et al. Inhibitory effects of fenofibrate on apoptosis and cell proliferation in human endothelial cells in high glucose. J Mol Med 86, 185–195 (2008). https://doi.org/10.1007/s00109-007-0257-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-007-0257-3

Keywords

Navigation