Skip to main content
Log in

Herzinsuffizienz mit erhaltener Ejektionsfraktion als Modellerkrankung für das kardio-pulmo-renale Syndrom

Bedeutung der viszeralen Fettexpansion als zentraler Pathomechanismus

Heart failure with preserved ejection fraction as a model disease for the cardio-pulmonary-renal syndrome

Importance of visceral fat expansion as central pathomechanism

  • Schwerpunkt: Kardio-pulmo-renale Medizin
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die Herzinsuffizienz mit erhaltener Ejektionsfraktion („heart failure with preserved ejection fraction“ [HFpEF]) stellt ein heterogenes Syndrom mit unterschiedlichen Ätiologien und pathophysiologischen Faktoren dar. Adipositas und Diabetes mellitus Typ 2 (T2DM), die überzufällig häufig koexistieren, induzieren eine Vielfalt von metabolischen und nichtmetabolischen Signalstörungen, die Entzündung, Fibrose und Myozytensteifigkeit – alles Kennzeichen der HFpEF – begünstigen. Dabei sind im Gegensatz zu anderen HFpEF-Risikofaktoren die Adipositas und der T2DM häufig mit der vermehrten Bildung von viszeralem Fettgewebe assoziiert, das einen hochaktiven endokrinen Gewebeverbund darstellt, der Inflammation und Fibrose über verschiedene para- und vasokrine Signale verstärken und so die Funktion von Herz, Niere und pulmonalem Gefäßbett nachhaltig beeinflussen kann. Ein abnorm ausgedehntes epikardiales Fettgewebe („epicardial adipose tissue“ [EAT]) bedingt hierbei nicht nur eine mechanische Einengung des diastolischen Füllungsvorgangs des Herzens, sondern ist aufgrund der hohen Konzentrationen freigesetzter proinflammatorischer Adipokine insbesondere auch mit einer erhöhten Inzidenz von Vorhofflimmern und eingeschränkten linksventrikulären Kontraktionsparametern vergesellschaftet. Adipöse Patienten mit HFpEF gehören daher zu einem HFpEF-Phänotyp mit besonders schlechter Prognose und könnten von einer EAT-ausgerichteten phänotypspezifischen Intervention profitieren. Dabei könnte neben Statinen und Antidiabetika wie Metformin gerade Glucagon-like-peptide-1(GLP-1)-Rezeptor-Agonisten oder Natrium-Glukose-Kotransporter-2(SGLT-2)-Inhibitoren eine besondere Rolle zukommen.

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome with diverse underlying etiologies and pathophysiological factors. Obesity and type 2 diabetes mellitus (T2DM), diseases which frequently coexist, induce a cluster of metabolic and nonmetabolic signaling derangements, which promote induction of inflammation, fibrosis and myocyte stiffness, all representing hallmarks of HFpEF. In contrast to other HFpEF risk factors, obesity and T2DM are often associated with the formation of an enlarged visceral adipose tissue (VAT), which is a highly active endocrine organ that can sustainably exacerbate inflammation and fibrotic remodeling of myocardial, renal, and vascular tissues via various paracrine and vasocrine signals. An abnormally large epicardial adipose tissue (EAT) thus not only causes a mechanical constriction of the diastolic filling procedure of the heart but is also associated with an increased release of proinflammatory adipokines that trigger atrial fibrillation and impaired left ventricular contraction parameters. Obese patients with HFpEF therefore belong to a unique HFpEF phenotype with a particularly poor prognosis that could benefit from an EAT-oriented phenotype-specific intervention. In addition to statins and antidiabetic drugs such as metformin, glucagon-like peptide‑1 (GLP-1) receptor agonists and sodium-glucose transporter 2 (SGLT-2) inhibitors could also play an important role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Alehagen U, Benson L, Edner M et al (2015) Association between use of Statins and mortality in patients with heart failure and ejection fraction of 〉/=50. Circ Heart Fail 8:862–870

    Article  CAS  Google Scholar 

  2. Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. https://doi.org/10.1056/NEJMoa2107038

    Article  Google Scholar 

  3. Anker SD, Butler J, Filippatos G et al (2021) Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status: results from the EMPEROR-reduced trial. Circulation 143:337–349

    Article  CAS  Google Scholar 

  4. Ather S, Chan W, Bozkurt B et al (2012) Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol 59:998–1005

    Article  Google Scholar 

  5. Beiroa D, Imbernon M, Gallego R et al (2014) GLP‑1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63:3346–3358

    Article  CAS  Google Scholar 

  6. Celutkiene J, Plymen CM, Flachskampf FA et al (2018) Innovative imaging methods in heart failure: a shifting paradigm in cardiac assessment. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:1615–1633

    Article  Google Scholar 

  7. Cho DH, Joo HJ, Kim MN et al (2018) Association between epicardial adipose tissue, high-sensitivity C‑reactive protein and myocardial dysfunction in middle-aged men with suspected metabolic syndrome. Cardiovasc Diabetol 17:95

    Article  CAS  Google Scholar 

  8. Bhatt DL (2021) Sotagliflozin shows benefit for difficult-to-treat form of heart failure. https://www.acc.org/about-acc/press-releases/2021/05/17/03/52/sotagliflozin-shows-benefit-for-difficult-to-treat-form-of-heart-failure

  9. Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14:591–602

    Article  Google Scholar 

  10. Gorter TM, van Veldhuisen DJ, Bauersachs J et al (2018) Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 20:16–37

    Article  Google Scholar 

  11. Grigoras A, Balan RA, Caruntu ID et al (2021) Perirenal adipose tissue-current knowledge and future opportunities. J Clin Med. https://doi.org/10.3390/jcm10061291

    Article  Google Scholar 

  12. Gunes H, Gunes H, Ozmen S et al (2020) Effects of metformin on epicardial adipose tissue and atrial electromechanical delay of obese children with insulin resistance. Cardiol Young 30:1429–1432

    Article  Google Scholar 

  13. Halabi A, Sen J, Huynh Q et al (2020) Metformin treatment in heart failure with preserved ejection fraction: a systematic review and meta-regression analysis. Cardiovasc Diabetol 19:124

    Article  CAS  Google Scholar 

  14. Iacobellis G, Bianco AC (2011) Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab 22:450–457

    Article  CAS  Google Scholar 

  15. Iacobellis G, Camarena V, Sant DW et al (2017) Human epicardial fat expresses glucagon-like peptide 1 and 2 receptors genes. Horm Metab Res 49:625–630

    Article  CAS  Google Scholar 

  16. Iacobellis G, Corradi D, Sharma AM (2005) Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med 2:536–543

    Article  Google Scholar 

  17. Iacobellis G, Gra-Menendez S (2020) Effects of dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity. Obesity 28:1068–1074

    Article  CAS  Google Scholar 

  18. Iacobellis G, Mohseni M, Bianco SD et al (2017) Liraglutide causes large and rapid epicardial fat reduction. Obesity 25:311–316

    Article  CAS  Google Scholar 

  19. Iacobellis G, Villasante Fricke AC (2020) Effects of semaglutide versus dulaglutide on epicardial fat thickness in subjects with type 2 diabetes and obesity. J Endocr Soc 4:bvz42

    Article  Google Scholar 

  20. Ida S, Kaneko R, Imataka K et al (2020) Effects of oral antidiabetic drugs and glucagon-like peptide‑1 receptor agonists on left ventricular diastolic function in patients with type 2 diabetes mellitus: a systematic review and network meta-analysis. Heart Fail Rev. https://doi.org/10.1007/s10741-020-09936-w

    Article  Google Scholar 

  21. Karastergiou K, Evans I, Ogston N et al (2010) Epicardial adipokines in obesity and coronary artery disease induce atherogenic changes in monocytes and endothelial cells. Arterioscler Thromb Vasc Biol 30:1340–1346

    Article  CAS  Google Scholar 

  22. Kolijn D, Pabel S, Tian Y et al (2021) Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Galpha oxidation. Cardiovasc Res 117:495–507

    Article  CAS  Google Scholar 

  23. Lam CS (2015) Diabetic cardiomyopathy: an expression of stage B heart failure with preserved ejection fraction. Diab Vasc Dis Res 12:234–238

    Article  CAS  Google Scholar 

  24. Lam CS, Donal E, Kraigher-Krainer E et al (2011) Epidemiology and clinical course of heart failure with preserved ejection fraction. Eur J Heart Fail 13:18–28

    Article  Google Scholar 

  25. Maimaituxun G, Kusunose K, Yamada H et al (2020) Deleterious effects of epicardial adipose tissue volume on global longitudinal strain in patients with preserved left ventricular ejection fraction. Front Cardiovasc Med 7:607825

    Article  Google Scholar 

  26. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab368

    Article  Google Scholar 

  27. Mulvihill EE, Varin EM, Ussher JR et al (2016) Inhibition of dipeptidyl peptidase‑4 impairs ventricular function and promotes cardiac fibrosis in high fat-fed diabetic mice. Diabetes 65:742–754

    Article  CAS  Google Scholar 

  28. Obokata M, Olson TP, Reddy YNV et al (2018) Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction. Eur Heart J 39:2810–2821

    Article  CAS  Google Scholar 

  29. Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19

    Article  CAS  Google Scholar 

  30. Pieske B, Tschope C, de Boer RA et al (2019) How to diagnose heart failure with preserved ejection fraction: the HFA-PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur Heart J 40:3297–3317

    Article  Google Scholar 

  31. Ponikowski P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European society of cardiology (ESC). Developed with the special contribution of the heart failure association (HFA) of the ESC. Eur J Heart Fail 18:891–975

    Article  Google Scholar 

  32. Raggi P, Gadiyaram V, Zhang C et al (2019) Statins reduce epicardial adipose tissue attenuation independent of lipid lowering: a potential pleiotropic effect. J Am Heart Assoc 8:e13104

    Article  CAS  Google Scholar 

  33. Sacks HS, Fain JN (2007) Human epicardial adipose tissue: a review. Am Heart J 153:907–917

    Article  CAS  Google Scholar 

  34. Salgado-Somoza A, Teijeira-Fernandez E, Rubio J et al (2012) Coronary artery disease is associated with higher epicardial retinol-binding protein 4 (RBP4) and lower glucose transporter (GLUT) 4 levels in epicardial and subcutaneous adipose tissue. Clin Endocrinol 76:51–58

    Article  CAS  Google Scholar 

  35. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R et al (2021) Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: a multimodality study. JACC Cardiovasc Imaging 14:393–407

    Article  Google Scholar 

  36. Sheahan KH, Wahlberg EA, Gilbert MP (2020) An overview of GLP‑1 agonists and recent cardiovascular outcomes trials. Postgrad Med J 96:156–161

    Article  Google Scholar 

  37. Sundaram V, Deo S, Rana M et al (2021) Rising prevalence of obese heart failure WITH preserved ejection fraction in the United States. J Am Coll Cardiol 77:680–680

    Article  Google Scholar 

  38. Tomovic K, Lazarevic J, Kocic G et al (2019) Mechanisms and pathways of anti-inflammatory activity of DPP‑4 inhibitors in cardiovascular and renal protection. Med Res Rev 39:404–422

    Article  CAS  Google Scholar 

  39. Tschope C, Van Linthout S, Kherad B (2017) Heart failure with preserved ejection fraction and future pharmacological strategies: a glance in the Crystal ball. Curr Cardiol Rep 19:70

    Article  Google Scholar 

  40. van Woerden G, Gorter TM, Westenbrink BD et al (2018) Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. Eur J Heart Fail 20:1559–1566

    Article  Google Scholar 

  41. Zhazykbayeva S, Pabel S, Mugge A et al (2020) The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys Rev 12:947–968

    Article  CAS  Google Scholar 

  42. Ziyrek M, Kahraman S, Ozdemir E et al (2019) Metformin monotherapy significantly decreases epicardial adipose tissue thickness in newly diagnosed type 2 diabetes patients. Rev Port Cardiol 38:419–423

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Tschöpe.

Ethics declarations

Interessenkonflikt

C. Tschöpe hat Referentenhonorare und/oder Beiträge zu Kongressen von Abbott, Abiomed, AstraZeneca, Bayer, Boehringer Ingelheim, Novartis, Pfizer und Servier erhalten; alle außerhalb der eingereichten Arbeit. S. Kelle erhielt Referentenhonorare von Bayer, Berlin-Chemie und Philips, alle ohne Bezug zu dieser Publikation. A. Remppis erhielt Referentenhonorare von Novartis, Bayer, Vifor, AstraZeneca und Impulse Dynamic, alle ohne Bezug zu dieser Publikation. A. Elsanhoury, V. Nelki und S. Van Linthout geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

B. Andrew Remppis, Bad Bevensen

Vedat Schwenger, Stuttgart

Claus F. Vogelmeier, Marburg

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tschöpe, C., Elsanhoury, A., Nelki, V. et al. Herzinsuffizienz mit erhaltener Ejektionsfraktion als Modellerkrankung für das kardio-pulmo-renale Syndrom. Internist 62, 1141–1152 (2021). https://doi.org/10.1007/s00108-021-01182-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-021-01182-y

Schlüsselwörter

Keywords

Navigation