Skip to main content
Log in

Osteosarkopenie

Osteosarcopenia

  • Schwerpunkt: Osteologie
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die Osteoporose wird heute als erhöhtes Frakturrisiko verstanden, wobei die Knochendichtemessung mit Dualröntgenabsorptiometrie (DXA) ein nützliches Diagnosekriterium und einen potenten Frakturprädiktor darstellt. Gerade bei geriatrischen Patienten ist das Ergebnis jedoch häufig falsch-negativ, sodass Diagnose, Therapieindikation und Therapieauswahl auf einer klinischen Gesamtevaluation der individuellen Situation beruhen sollten. Die Sarkopenie ist ein geriatrisches Syndrom, das durch einen generalisierten Verlust von Muskelmasse und Muskelfunktion gekennzeichnet ist. Damit verbunden ist eine erhöhte Wahrscheinlichkeit von Stürzen, Frakturen, Behinderung und Mortalität. Seit 2018 kann in Deutschland die Sarkopenie in der Internationalen statistischen Klassifikation der Krankheiten und verwandter Gesundheitsprobleme, 10. Revision, German Modification (ICD-10-GM: M62.50) codiert werden. Bei entsprechendem Frakturrisiko und Hinweisen auf das Vorliegen einer Sarkopenie sollte im Rahmen der Knochendichtemessung die Gesamtkörperzusammensetzung mittels DXA bestimmt werden. Bei der Behandlung einer Osteosarkopenie müssen neben den pharmakologischen auch nichtpharmakologische Maßnahmen eingesetzt werden. Wichtig ist vor allem, die Ursachen frakturbedingender Stürze zu klären und gegebenenfalls zu beheben sowie regelmäßig die Therapieziele zu überprüfen.

Abstract

Osteoporosis is nowadays understood as an increased risk of fractures, with bone density measurement by dual-energy X‑ray absorptiometry (DXA) being a useful diagnostic criterion and a potent fracture predictor; however, especially in geriatric patients the result is often falsely negative, so that the diagnosis, indications for treatment and treatment selection should be based on an overall clinical evaluation of the individual situation. Sarcopenia is defined as a geriatric syndrome characterized by a generalized loss of skeletal mass and muscle function. Sarcopenia is associated with an increased likelihood of adverse outcomes including falls, fractures, disability and mortality. Since 2018 it is possible in Germany to encode sarcopenia in the International Statistical Classification of Diseases and Related Health Problems, 10th revision, German modification (ICD-10-GM, M62.50). In the case of a high fracture risk and indications for the presence of sarcopenia, the whole body composition should be assessed by DXA within the framework of the measurement of bone mineral density. In the treatment of osteosarcopenia non-pharmacological measures must be initiated in addition to pharmacological measures. It is particularly important to clarify and if necessary to resolve the cause of falls resulting in fractures as well as to regularly reevaluate the treatment goals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Argilés JM, Anker SD, Evans WJ et al (2010) Consensus on cachexia definitions. J Am Med Dir Assoc 11:229–230. https://doi.org/10.1016/j.jamda.2010.02.004

    Article  PubMed  Google Scholar 

  2. Bauer JM, Verlaan S, Bautmans I et al (2015) Effects of a vitamin D and Leucine-enriched whey protein nutritional supplement on measures of Sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc 16:740–747. https://doi.org/10.1016/j.jamda.2015.05.021

    Article  PubMed  Google Scholar 

  3. Baum J, Kim I‑Y, Wolfe R (2016) Protein consumption and the elderly: what is the optimal level of intake? Nutrients 8:359. https://doi.org/10.3390/nu8060359

    Article  CAS  PubMed Central  Google Scholar 

  4. Cardon-Thomas DK, Riviere T, Tieges Z, Greig CA (2017) Dietary protein in older adults: adequate daily intake but potential for improved distribution. Nutrients 9:1–10. https://doi.org/10.3390/nu9030184

    Article  CAS  Google Scholar 

  5. Cederholm T, Jensen GL, Correia MITD et al (2018) GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin Nutr. https://doi.org/10.1016/j.clnu.2018.08.002

    Article  PubMed  Google Scholar 

  6. Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31. https://doi.org/10.1093/ageing/afy169

    Article  PubMed  Google Scholar 

  7. Cruz-Jentoft AJ, Landi F, Topinková E, Michel J‑P (2010) Understanding sarcopenia as a geriatric syndrome. Curr Opin Clin Nutr Metab Care 13:1–7. https://doi.org/10.1097/MCO.0b013e328333c1c1

    Article  PubMed  Google Scholar 

  8. Dodds RM, Roberts HC, Cooper C, Sayer AA (2016) The epidemiology of Sarcopenia. J Clin Densitom 18:461–466. https://doi.org/10.1016/j.jocd.2015.04.012

    Article  Google Scholar 

  9. Drey M, Ferrari U, Schraml M et al (2020) German version of SARC-F: translation, adaption, and validation. J Am Med Dir Assoc 21:747–751.e1. https://doi.org/10.1016/j.jamda.2019.12.011

    Article  PubMed  Google Scholar 

  10. Drey M, Henkel M, Petermeise S et al (2018) Assessment of bone and muscle measurements by peripheral quantitative computed tomography in geriatric patients. J Clin Densitom. https://doi.org/10.1016/j.jocd.2018.10.002

    Article  PubMed  Google Scholar 

  11. Drey M, Krieger B, Sieber CC et al (2014) Motoneuron loss is associated with sarcopenia. J Am Med Dir Assoc 15:435–439. https://doi.org/10.1016/j.jamda.2014.02.002

    Article  PubMed  Google Scholar 

  12. Drey M, Sieber CC, Bertsch T et al (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28:895–899. https://doi.org/10.1007/s40520-015-0494-1

    Article  PubMed  Google Scholar 

  13. Fiatarone MA, Marks EC, Ryan ND et al (1990) High-intensity strength training in nonagenarians. Effects on skeletal muscle. JAMA 263:3029–3034

    Article  CAS  PubMed  Google Scholar 

  14. Groenendijk I, den Boeft L, van Loon LJC, de Groot LCPGM (2019) High versus low dietary protein intake and Bone health in older adults: a systematic review and meta-analysis. Comput Struct Biotechnol J 17:1101–1112. https://doi.org/10.1016/j.csbj.2019.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hernlund E, Svedbom A, Ivergård M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136. https://doi.org/10.1007/s11657-013-0136-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huo YR, Suriyaarachchi P, Gomez F et al (2015) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16:290–295. https://doi.org/10.1016/j.jamda.2014.10.018

    Article  PubMed  Google Scholar 

  17. Ikizler TA, Cano NJ, Franch H et al (2013) Prevention and treatment of protein energy wasting in chronic kidney disease patients: a consensus statement by the International Society of Renal Nutrition and Metabolism. Kidney Int 84:1096–1107. https://doi.org/10.1038/ki.2013.147

    Article  CAS  PubMed  Google Scholar 

  18. Isaacson J, Brotto M (2014) Physiology of mechanotransduction: How do muscle and bone “talk” to one another? Clin Rev Bone Miner Metab 12:77–85. https://doi.org/10.1007/s12018-013-9152-3

    Article  PubMed  Google Scholar 

  19. Kendler DL, Marin F, Zerbini CAF et al (2018) Effects of teriparatide and risedronate on new fractures in post-menopausal women with severe osteoporosis (VERO): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 391:230–240. https://doi.org/10.1016/S0140-6736(17)32137-2

    Article  CAS  PubMed  Google Scholar 

  20. Landi F, Liperoti R, Russo A et al (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 31:652–658. https://doi.org/10.1016/j.clnu.2012.02.007

    Article  PubMed  Google Scholar 

  21. Lichtenberg T, von Stengel S, Sieber C, Kemmler W (2019) The favorable effects of a high-intensity resistance training on Sarcopenia in older community-dwelling men with Osteosarcopenia: the randomized controlled FrOST study. Clin Interv Aging 14:2173–2186. https://doi.org/10.2147/CIA.S225618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Di Monaco M, Castiglioni C, De Toma E et al (2015) Presarcopenia and sarcopenia in hip-fracture women: prevalence and association with ability to function in activities of daily living. Aging Clin Exp Res 27:465–472. https://doi.org/10.1007/s40520-014-0306-z

    Article  PubMed  Google Scholar 

  23. Papa EV, Dong X, Hassan M (2017) Resistance training for activity limitations in older adults with skeletal muscle function deficits: a systematic review. Clin Interv Aging 12:955–961. https://doi.org/10.2147/CIA.S104674

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peterson MD, Sen A, Gordon PM (2011) Influence of resistance exercise on lean body mass in aging adults: a meta-analysis. Med Sci Sports Exerc 43:249–258. https://doi.org/10.1249/MSS.0b013e3181eb6265

    Article  PubMed  PubMed Central  Google Scholar 

  25. Phillips A, Strobl R, Vogt S et al (2017) Sarcopenia is associated with disability status—results from the KORA-Age study. Osteoporos Int 28:2069–2079. https://doi.org/10.1007/s00198-017-4027-y

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberg IH (1989) Summary comment. Am J Clin Nutr 50:1231–1233

    Article  Google Scholar 

  27. Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427. https://doi.org/10.1056/NEJMoa1708322

    Article  CAS  PubMed  Google Scholar 

  28. Shaw SC, Dennison EM, Cooper C (2017) Epidemiology of Sarcopenia: determinants throughout the lifecourse. Calcif Tissue Int 101:229–247. https://doi.org/10.1007/s00223-017-0277-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stangl MK, Böcker W, Chubanov V et al (2018) Sarcopenia—endocrinological and neurological aspects. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-0672-1007

    Article  PubMed  Google Scholar 

  30. Vitale G, Cesari M, Mari D (2016) Aging of the endocrine system and its potential impact on sarcopenia. Eur J Intern Med 35:10–15. https://doi.org/10.1016/j.ejim.2016.07.017

    Article  CAS  PubMed  Google Scholar 

  31. Yu R, Leung J, Woo J (2014) Incremental predictive value of sarcopenia for incident fracture in an elderly Chinese cohort: results from the Osteoporotic Fractures in Men (MrOs) Study. J Am Med Dir Assoc 15:551–558. https://doi.org/10.1016/j.jamda.2014.02.005

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Drey M.Sc..

Ethics declarations

Interessenkonflikt

M. Drey und R. Schmidmaier geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Lehnert, Salzburg

M. Reincke, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drey, M., Schmidmaier, R. Osteosarkopenie. Internist 62, 505–512 (2021). https://doi.org/10.1007/s00108-021-01025-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-021-01025-w

Schlüsselwörter

Keywords

Navigation