Skip to main content
Log in

In-vitro-Diagnostik und Monitoring bei Insektengifthyposensibilisierung

In vitro diagnosis and monitoring of Hymenoptera venom hyposensitization

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Gerade die spezifische Immuntherapie (SIT) der Insektengiftallergie ist ein Beispiel für die Wirksamkeit dieser Behandlung bei IgE-vermittelten allergischen Erkrankungen geworden. Während In-vitro-Verfahren zur Diagnostik der Hymenopterengiftallergie sowie die Bestimmung der Tryptase zur Beurteilung der möglichen Gefährdung des Patienten fest etabliert sind, bleiben In-vitro-Verfahren zur Beurteilung des Verlaufes einer SIT bei Insektengiftallergie umstritten. Als mögliche Verfahren werden hier die Bestimmung des spezifischen IgE, des spezifischen IgG4, der Basophilenaktivierung – gemessen als CD63-Expression – und die Lymphozytenaktivierung sowie deren IL-10-Freisetzung diskutiert. Vorläufige Daten lassen v. a. letzteren Effekt dazu geeignet erscheinen, während die Bestimmung der Basophilenaktivierung keine sicheren Ergebnisse zeigte.

Abstract

Specific immunotherapy (SIT) of hymenoptera venom allergy, in particular, has become an example for the effectiveness of the treatment of IgE-mediated allergic diseases. In vitro diagnostic procedures and the measurement of serum tryptase for risk assessment are well-established in the process of diagnose finding and therapy preparation. For monitoring and validation of the effectiveness of the SIT, however, in vitro diagnostic procedures remain controversial. Potentially useful approaches include detection of specific IgE, specific IgG4, basophile activation – represented by the CD 63 expression – and the lymphocyte proliferation and its IL10 release. Preliminary data suggest that the latter method appear appropriate, whereas the detection of basophile activation did not produce definite results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Bilo BM, Rueff F, Mosbech H et al (2005) Diagnosis of Hymenoptera venom allergy. Allergy 60:1339–1349

    Article  PubMed  CAS  Google Scholar 

  2. Ruëff F, Przybilla B, Biló MB et al (2010) Predictors of side effects during the buildup phase of venom immunotherapy for Hymenoptera venom allergy: the importance of baseline serum tryptase. J Allergy Clin Immunol 126:105–111.e5

    Article  PubMed  Google Scholar 

  3. Müller UR, Johansen N, Petersen AB et al (2009) Hymenoptera venom allergy: analysis of double positivity to honey bee and Vespula venom by estimation of IgE antibodies to species-specific major allergens Api m1 and Ves v5. Allergy 64:543–548

    Article  PubMed  Google Scholar 

  4. Merk HF (2010) Fortschritte in Dermatologie & Venerologie, München 2010. Neue labordiagnostische Methoden (im Druck)

  5. Hofmann SC, Pfender N, Weckesser S et al (2011) Added value of IgE detection to rApi m 1 and rVes v 5 in patients with Hymenoptera venom allergy. J Allergy Clin Immunol 127:265–267

    Article  PubMed  CAS  Google Scholar 

  6. Korošec P, Valenta R, Mittermann I et al (2011) Low sensitivity of commercially available rApi m 1 for diagnosis of honeybee venom allergy. J Allergy Clin Immunol (im Druck)

  7. Ruëff F, Jappe U, Przybilla B (2010) Standards und Fallstricke der In-vitro-Diagnostik der Insektengiftallergie. Hautarzt 61:938–945

    Article  PubMed  Google Scholar 

  8. Bellinghausen I, Knop J, Saloga J (2006) Wirkmechanismen der spezifischen Immuntherapie. Hautarzt 57:855–859

    Article  PubMed  CAS  Google Scholar 

  9. Akdis CA, Blesken T, Akdis M et al (1998) Role of interleukin 10 in specific immunotherapy. J Clin Invest 102:98–106

    Article  PubMed  CAS  Google Scholar 

  10. Bellinghausen I, Metz G, Enk AH et al (1997) Insect venom immunotherapy induces interleukin-10 production and a Th2-to-Th1 shift, and changes surface marker expression in venom-allergic subjects. Eur J Immunol 27:1131–1139

    Article  PubMed  CAS  Google Scholar 

  11. Ott H, Wosnitza M, Merk HF (2008) Immunologische Verlaufsparameter unter spezifischer Immuntherapie. Hautarzt 59:551–556

    Article  PubMed  CAS  Google Scholar 

  12. Ebo DG, Hagendorens MM, Schuerwegh AJ et al (2007) Flow-assisted quantification of in vitro activated basophils in the diagnosis of wasp venom allergy and follow-up of wasp venom immunotherapy. Cytometry 72B:196–203

    Article  CAS  Google Scholar 

  13. Dreschler K, Bratke K, Petermann S et al (2011) Impact of immunotherapy on blood dendritic cells in patients with Hymenoptera venom allergy. J Allergy Clin Immunol 127:487–494.e3

    Article  PubMed  CAS  Google Scholar 

  14. Bellinghausen I, König B, Böttcher I et al (2006) Inhibition of human allergic T-helper type 2 immune responses by induced regulatory T cells requires the combination of interleukin-10-treated dendritic cells and transforming growth factor-beta for their induction. Clin Exp Allergy 36:1546–1555

    Article  PubMed  CAS  Google Scholar 

  15. Jutel M, Pichler WJ, Skrbic D et al (1995) Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-gamma secretion in specific allergen-stimulated T cell cultures. J Immunol 154:4187–4194

    PubMed  CAS  Google Scholar 

  16. Secrist H, Chelen CJ, Wen Y et al (1993) Allergen immunotherapy decreases interleukin 4 production in CD4 + T cells from allergic individuals. J Exp Med 178:2123–2130

    Article  PubMed  CAS  Google Scholar 

  17. Jutel M, Akdis M, Budak F et al (2003) IL-10 and TGF-beta cooperate in the regulatory T cell response to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205–1214

    Article  PubMed  CAS  Google Scholar 

  18. Pierkes M, Bellinghausen I, Hultsch T et al (1999) Decreased release of histamine and sulfidoleukotrienes by human peripheral blood leukocytes after wasp venom immunotherapy is partially due to induction of IL-10 and IFN-gamma production of T cells. J Allergy Clin Immunol 103:326–332

    Article  PubMed  CAS  Google Scholar 

  19. Akdis CA, Akdis M (2011) Mechanisms of allergen-specific immunotherapy. J Allergy Clin Immunol 127:18–27

    Article  PubMed  CAS  Google Scholar 

  20. Kleine-Tebbe J, Erdmann S, Knol EF et al (2006) Diagnostic tests based on human basophils: potentials, pitfalls and perspectives. Int Arch Allergy Immunol 141:79–90

    Article  PubMed  Google Scholar 

  21. Erdmann SM, Sachs B, Kwiecien R et al (2004) The basophil activation test in wasp venom allergy: sensitivity, specificity and monitoring specific immunotherapy. Allergy 59:1102–1109

    Article  PubMed  CAS  Google Scholar 

  22. Eberlein-König B, Schmidt-Leidescher C, Rakoski J et al (2006) In vitro basophil activation using CD63 expression in patients with bee and wasp venom allergy. J Investig Allergol Clin Immunol 16:5–10

    PubMed  Google Scholar 

  23. Larché M (2007) Regulatory T cells in allergy and asthma. Chest 132:1007–1014

    Article  PubMed  Google Scholar 

  24. Mamessier E, Birnbaum J, Dupuy P et al (2006) Ultra-rush venom immunotherapy induces differential T cell activation and regulatory patterns according to the severity of allergy. Clin Exp Allergy 36:704–713

    Article  PubMed  CAS  Google Scholar 

  25. Akdis M, Akdis CA (2009) Therapeutic manipulation of immune tolerance in allergic disease. Nat Rev Drug Discov 8:645–660

    Article  PubMed  CAS  Google Scholar 

  26. Wu K, Bi Y, Sun K, Wang C (2007) IL-10-producing type 1 regulatory T cells and allergy. Cell Mol Immunol 4:269–275

    PubMed  Google Scholar 

  27. Kerstan A, Albert C, Klein D et al (2011) Wasp venom immunotherapy induces activation and homing of CD4 + CD25 + forkhead box protein 3– positive regulatory T cells controlling TH1 responses. J Allergy Clin Immunol 127:495.e6–501.e6

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.M. Neis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neis, M., Wurpts, G., Wilbers, L. et al. In-vitro-Diagnostik und Monitoring bei Insektengifthyposensibilisierung. Hautarzt 62, 677–682 (2011). https://doi.org/10.1007/s00105-011-2160-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-011-2160-7

Schlüsselwörter

Keywords

Navigation