Skip to main content
Log in

Akute perioperative Rechtsherzinsuffizienz

Diagnostik und Therapie

Acute perioperative right heart insufficiency

Diagnostics and treatment

  • CME
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Das akute Rechtsherzversagen wird als Ursache einer kardiopulmonalen Insuffizienz häufig übersehen. Die verschiedenen Krankheitsbilder, die dem Rechtsherzversagen ätiologisch auf den Ebenen der Nach‑, Vorlast und Kontraktilität zugrunde liegen, können mithilfe einer zielgerichteten Diagnostik abgeklärt werden. Neben klinischen Symptomen und laborchemischen Parametern ist v. a. die Echokardiographie für die Diagnosestellung relevant. Die symptomatische Behandlung des akut vital bedrohten Patienten ist essenziell. Im Vordergrund stehen die Senkung des rechtsventrikulären Drucks und der Nachlast, eine Korrektur der systemischen Hypotension und die positiv-inotrope Unterstützung des Ventrikels. Mechanische Organersatz- bzw. Unterstützungsverfahren kommen zunehmend bei anhaltendem Rechtsherzversagen zum Einsatz und erweitern die Behandlungsmöglichkeiten. Prognostisch entscheidend ist eine auf die auslösende Grunderkrankung abgestimmte kausale Therapie.

Abstract

Acute right heart failure is often overlooked as a cause of cardiopulmonary insufficiency. The various pathologies underlying right heart failure at the level of afterload, preload and contractility, make rapid, targeted diagnostics necessary. In addition to clinical symptoms and laboratory chemical parameters, echocardiography in particular is relevant for making a diagnosis. Symptomatic treatment of the endangered patient is essential. The focus is on a reduction of right ventricular pressure and afterload, a correction of systemic hypotension and positive inotropic support of the right ventricle. Mechanical organ replacement and support procedures are increasingly being used in the case of persistent right heart failure and expand the possibilities for treatment. Decisive for the prognosis is a causal treatment adapted to the underlying triggering disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Dell’Italia LJ (1991) The right ventricle: anatomy, physiology, and clinical importance. Curr Probl Cardiol 16:653–720

    PubMed  Google Scholar 

  2. Reiser PJ, Portman MA et al (2001) Human cardiac myosin heavy chain isoforms in fetal and failing adult atria and ventricles. Am J Physiol Heart Circ Physiol 280:H1814–H1820

    Article  CAS  PubMed  Google Scholar 

  3. Kramm T, Guth S et al (2016) Treatment of acute and chronic right ventricular failure. Med Klin Intensivmed Notfmed 111:463–480

    Article  CAS  PubMed  Google Scholar 

  4. Voswinckel R, Hoeper MM et al (2012) Right heart failure in chronic pulmonary hypertension and acute pulmonary embolism. Internist (Berl) 53:545–556

    Article  CAS  Google Scholar 

  5. Huber G, Glaser F (2014) Guidelines Rechtsherz. J Kardiol Austrian J Cardiol 21:38–48

    Google Scholar 

  6. Petitjean C, Rougon N et al (2005) Assessment of myocardial function: a review of quantification methods and results using tagged MRI. J Cardiovasc Magn Reson 7:501–516

    Article  PubMed  Google Scholar 

  7. Zeydabadinejad M (Hrsg) (2006) Echokardiographie des rechten Herzens, 1. Aufl. Thieme, Stuttgart

    Google Scholar 

  8. Matthews JC, McLaughlin V (2008) Acute right ventricular failure in the setting of acute pulmonary embolism or chronic pulmonary hypertension: a detailed review of the pathophysiology, diagnosis, and management. Curr Cardiol Rev 4:49–59

    Article  PubMed  PubMed Central  Google Scholar 

  9. Armour JA, Lippincott DB et al (1973) Functional anatomy of the interventricular septum. Cardiology 58:65–79

    Article  CAS  PubMed  Google Scholar 

  10. Klinke R, Pape HC, Silbernagl S (2005) Physiologie. Thieme, Stuttgart

    Book  Google Scholar 

  11. Steiner S, Strauer BE (2009) Pathophysiology of the right ventricle in lung diseases. Internist (Berl) 50:1054–1058. https://doi.org/10.1007/s00108-009-2334-x (1054, 1060, passim)

    Article  CAS  Google Scholar 

  12. Olschewski H, Hoeper MM et al (2007) Diagnosis and therapy of chronic pulmonary hypertension. Clin Res Cardiol 96:301–330

    Article  PubMed  Google Scholar 

  13. Rex S, Marx G (2012) Therapie der akuten Herzinsuffizienz. Anästhesiol Intensivmed 53:610–631

    Google Scholar 

  14. Kaul TK, Fields BL (2000) Postoperative acute refractory right ventricular failure: incidence, pathogenesis, management and prognosis. Cardiovasc Surg 8:1–9

    Article  CAS  PubMed  Google Scholar 

  15. Piazza G, Goldhaber SZ (2005) The acutely decompensated right ventricle: pathways for diagnosis and management. Chest 128:1836–1852

    Article  PubMed  Google Scholar 

  16. Zwissler B (2000) Acute right heart failure. Etiology – pathophysiology – diagnosis – therapy. Anaesthesist 49:788–808

    Article  CAS  PubMed  Google Scholar 

  17. Aymard T, Kadner A et al (2013) Massive pulmonary embolism: surgical embolectomy versus thrombolytic therapy—should surgical indications be revisited? Eur J Cardiothorac Surg 43:90–94 (discussion 94)

    Article  PubMed  Google Scholar 

  18. Mazzoni MC, Borgstrom P et al (1989) Lumenal narrowing and endothelial cell swelling in skeletal muscle capillaries during hemorrhagic shock. Circ Shock 29:27–39

    CAS  PubMed  Google Scholar 

  19. Kowalewski J, Brocki M et al (1999) Right ventricular morphology and function after pulmonary resection. Eur J Cardiothorac Surg 15:444–448

    Article  CAS  PubMed  Google Scholar 

  20. Reed CE, Spinale FG et al (1992) Effect of pulmonary resection on right ventricular function. Ann Thorac Surg 53:578–582

    Article  CAS  PubMed  Google Scholar 

  21. Brooks H, Kirk ES et al (1971) Performance of the right ventricle under stress: relation to right coronary flow. J Clin Invest 50:2176–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohn JN, Guiha NH et al (1974) Right ventricular infarction. Clinical and hemodynamic features. Am J Cardiol 33:209–214

    Article  CAS  PubMed  Google Scholar 

  23. Dhainaut JF, Lanore JJ et al (1988) Right ventricular dysfunction in patients with septic shock. Intensive Care Med 14(Suppl 2):488–491

    Article  PubMed  Google Scholar 

  24. Raper R, Sibbald WJ (1987) Right ventricular function in the surgical patient. World J Surg 11:154–160

    Article  CAS  PubMed  Google Scholar 

  25. Vlahakes GJ, Turley K et al (1981) The pathophysiology of failure in acute right ventricular hypertension: hemodynamic and biochemical correlations. Circulation 63:87–95

    Article  CAS  PubMed  Google Scholar 

  26. Zwissler B, Briegel J (1999) Rechtsventrikuläre Dysfunktion – Ein Problem beim septischen Patienten ? J Anästh Intensivbehandl 5:224–226

    Google Scholar 

  27. Jardin F, Vieillard-Baron A (2003) Right ventricular function and positive pressure ventilation in clinical practice: from hemodynamic subsets to respirator settings. Intensive Care Med 29:1426–1434

    Article  PubMed  Google Scholar 

  28. Forst H (1993) Herzfunktion unter Beatmung. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  29. Leschke M, Wadlich A (2007) Right heart failure and cor pulmonale. Internist (Berl) 48:948–960

    Article  CAS  Google Scholar 

  30. McIntyre KM, Sasahara AA (1971) The hemodynamic response to pulmonary embolism in patients without prior cardiopulmonary disease. Am J Cardiol 28:288–294

    Article  CAS  PubMed  Google Scholar 

  31. Sibbald WJ, Driedger AA (1983) Right ventricular function in acute disease states: pathophysiologic considerations. Crit Care Med 11:339–345

    Article  CAS  PubMed  Google Scholar 

  32. Wetsch WA, Lahm T et al (2011) Cardiac insufficiency: acute right heart failure. Anasthesiol Intensivmed Notfallmed Schmerzther 46:718–725

    Article  PubMed  Google Scholar 

  33. Konstantinidis SVTA, Agnelli G (2014) ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35:3033–3069

    Article  Google Scholar 

  34. Molaug M, Geiran O et al (1982) Dynamics of the interventricular septum and free ventricular walls during blood volume expansion and selective right ventricular volume loading in dogs. Acta Physiol Scand 116:245–256

    Article  CAS  PubMed  Google Scholar 

  35. Meyer FJ, Kauts HA, Borst AA (2008) Pulmonale Hypertonie und Rechtsherzversagen auf der Intensivstation. Pneumologe 5:163–174

    Article  Google Scholar 

  36. Werdan K, Ruß M, Engelmann L et al (2011) Deutsch-österreische S3-Leitlinie: Infarktbedingter kardiogener Schock – Diagnose, Monitoring und Therapie. Intensivmedizin 48:291–344

    Article  Google Scholar 

  37. Boxt LM (1999) Radiology of the right ventricle. Radiol Clin North Am 37:379–400

    Article  CAS  PubMed  Google Scholar 

  38. Kucher N, Goldhaber SZ (2003) Cardiac biomarkers for risk stratification of patients with acute pulmonary embolism. Circulation 108:2191–2194

    Article  PubMed  Google Scholar 

  39. Mueller C, Scholer A et al (2004) Use of B‑type natriuretic peptide in the evaluation and management of acute dyspnea. N Engl J Med 350:647–654

    Article  CAS  PubMed  Google Scholar 

  40. Wang TJ, Larson MG et al (2004) Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med 350:655–663

    Article  CAS  PubMed  Google Scholar 

  41. Leuchte HH, Holzapfel M et al (2004) Clinical significance of brain natriuretic peptide in primary pulmonary hypertension. J Am Coll Cardiol 43:764–770

    Article  CAS  PubMed  Google Scholar 

  42. Nagaya N, Nishikimi T et al (1998) Plasma brain natriuretic peptide levels increase in proportion to the extent of right ventricular dysfunction in pulmonary hypertension. J Am Coll Cardiol 31:202–208

    Article  CAS  PubMed  Google Scholar 

  43. Vieillard-Baron A, Prin S et al (2002) Echo-Doppler demonstration of acute cor pulmonale at the bedside in the medical intensive care unit. Am J Respir Crit Care Med 166:1310–1319

    Article  PubMed  Google Scholar 

  44. Nath J, Foster E et al (2004) Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol 43:405–409

    Article  PubMed  Google Scholar 

  45. Weekes AJ (2016) Diagnostic accuracy of right ventricular dysfunction markers. Ann Emerg Med 68:277–291

    Article  PubMed  Google Scholar 

  46. Ruß M, Werdan K, Buerke M (2009) Akutes Rechtsherzversagen. Intensivmed 46:415–420

    Article  Google Scholar 

  47. Nagueh SF, Kopelen HA et al (1996) Relation of mean right atrial pressure to echocardiographic and Doppler parameters of right atrial and right ventricular function. Circulation 93:1160–1169

    Article  CAS  PubMed  Google Scholar 

  48. Raina A, Seetha Rammohan HR et al (2013) Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail 19:16–24

    Article  PubMed  Google Scholar 

  49. Damman K (2009) Increased CVP is associated with impaired renal function and mortality. J Am Coll Cardiol 53:582–588

    Article  PubMed  Google Scholar 

  50. Atluri P (2013) Predicting right ventricular failure in the modern LV-assist device era. Ann Thorac Surg 96:857–864

    Article  PubMed  PubMed Central  Google Scholar 

  51. Carl M, Alms A, Braun J et al (2010) S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculatory system. Anästhesiol Intensivmed 51:770–786

    Google Scholar 

  52. Hoeper MM, Granton J (2011) Intensive care unit management of patients with severe pulmonary hypertension and right heart failure. Am J Respir Crit Care Med 184:1114–1124

    Article  CAS  PubMed  Google Scholar 

  53. Network TARDS (2000) Ventilation with lower tidal volumens as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  54. Elmi-Sarabi M, Deschamps A et al (2017) Aerosolized vasodilators for the treatment of pulmonary hypertension in cardiac surgical patients: a systematic review and meta-analysis. Anesth Analg 125:393–402

    Article  PubMed  Google Scholar 

  55. Ichinose F, Roberts JD Jr. et al (2004) Inhaled nitric oxide: a selective pulmonary vasodilator: current uses and therapeutic potential. Circulation 109:3106–3111

    Article  PubMed  Google Scholar 

  56. Christenson J, Lavoie A et al (2000) The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am J Respir Crit Care Med 161:1443–1449

    Article  CAS  PubMed  Google Scholar 

  57. Wang T, El Kebir D et al (2003) Inhaled nitric oxide in 2003: a review of its mechanisms of action. Can J Anaesth 50:839–846

    Article  PubMed  Google Scholar 

  58. Olschewski H, Rohde B et al (2003) Pharmacodynamics and pharmacokinetics of inhaled iloprost, aerosolized by three different devices, in severe pulmonary hypertension. Chest 124:1294–1304

    Article  CAS  PubMed  Google Scholar 

  59. Khan TA, Schnickel G et al (2009) A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J Thorac Cardiovasc Surg 138:1417–1424

    Article  CAS  PubMed  Google Scholar 

  60. Rex S, Missant C et al (2008) Effects of inhaled iloprost on right ventricular contractility, right ventriculo-vascular coupling and ventricular interdependence: a randomized placebo-controlled trial in an experimental model of acute pulmonary hypertension. Crit Care 12:R113

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sommer N, Hecker M et al (2016) Pulmonary hypertension : what is new in therapy? Anaesthesist 65:635–652

    Article  CAS  PubMed  Google Scholar 

  62. Atz AM, Lefler AK et al (2002) Sildenafil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 124:628–629

    Article  PubMed  Google Scholar 

  63. Ghofrani HA, Rose F et al (2002) Amplification of the pulmonary vasodilatory response to inhaled iloprost by subthreshold phosphodiesterase types 3 and 4 inhibition in severe pulmonary hypertension. Crit Care Med 30:2489–2492

    Article  CAS  PubMed  Google Scholar 

  64. Wilkens H, Guth A et al (2001) Effect of inhaled iloprost plus oral sildenafil in patients with primary pulmonary hypertension. Circulation 104:1218–1222

    Article  CAS  PubMed  Google Scholar 

  65. Matot I, Gozal Y (2004) Pulmonary responses to selective phosphodiesterase-5 and phosphodiesterase-3 inhibitors. Chest 125:644–651

    Article  CAS  PubMed  Google Scholar 

  66. Kerbaul F, Rondelet B et al (2004) Effects of norepinephrine and dobutamine on pressure load-induced right ventricular failure. Crit Care Med 32:1035–1040

    Article  CAS  PubMed  Google Scholar 

  67. Pagnamenta A, Fesler P et al (2003) Pulmonary vascular effects of dobutamine in experimental pulmonary hypertension. Crit Care Med 31:1140–1146

    Article  CAS  PubMed  Google Scholar 

  68. Feneck RO, Sherry KM et al (2001) Comparison of the hemodynamic effects of milrinone with dobutamine in patients after cardiac surgery. J Cardiothorac Vasc Anesth 15:306–315

    Article  CAS  PubMed  Google Scholar 

  69. Brixius K, Reicke S et al (2002) Beneficial effects of the Ca(2+) sensitizer levosimendan in human myocardium. Am J Physiol Heart Circ Physiol 282:H131–137

    Article  CAS  PubMed  Google Scholar 

  70. Haikala H, Nissinen E et al (1995) Troponin C‑mediated calcium sensitization induced by levosimendan does not impair relaxation. J Cardiovasc Pharmacol 25:794–801

    Article  CAS  PubMed  Google Scholar 

  71. Janssen PM, Datz N et al (2000) Levosimendan improves diastolic and systolic function in failing human myocardium. Eur J Pharmacol 404:191–199

    Article  CAS  PubMed  Google Scholar 

  72. De Witt BJ, Ibrahim IN et al (2002) An analysis of responses to levosimendan in the pulmonary vascular bed of the cat. Anesth Analg 94:1427–1433 (table of contents)

    PubMed  Google Scholar 

  73. Kaheinen P, Pollesello P et al (2001) Levosimendan increases diastolic coronary flow in isolated guinea-pig heart by opening ATP-sensitive potassium channels. J Cardiovasc Pharmacol 37:367–374

    Article  CAS  PubMed  Google Scholar 

  74. Todaka K, Wang J et al (1996) Effects of levosimendan on myocardial contractility and oxygen consumption. J Pharmacol Exp Ther 279:120–127

    CAS  PubMed  Google Scholar 

  75. Singh BN, Lilleberg J, Sandel EP (1999) Effects of levosimendan on myocardial contractility and oxygen consumption. Am J Cardiol 83:16–20

    Article  CAS  Google Scholar 

  76. Missant C, Rex S et al (2007) Levosimendan improves right ventriculovascular coupling in a porcine model of right ventricular dysfunction. Crit Care Med 35:707–715

    Article  CAS  PubMed  Google Scholar 

  77. Morelli A, Teboul JL et al (2006) Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med 34:2287–2293

    Article  CAS  PubMed  Google Scholar 

  78. Green EM, Givertz MM (2012) Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep 9:228–235

    Article  PubMed  Google Scholar 

  79. Harjola VP, Mebazaa A et al (2016) Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail 18:226–241

    Article  PubMed  Google Scholar 

  80. Russ MA, Prondzinsky R et al (2009) Right ventricular function in myocardial infarction complicated by cardiogenic shock: improvement with levosimendan. Crit Care Med 37:3017–3023

    Article  CAS  PubMed  Google Scholar 

  81. Post F, Mertens D, Peetz D et al (2006) Levosimendan for acute pulmonary embolism. Intensivmed Notfallmed 43:636–642

    Article  Google Scholar 

  82. Powell BP, Simes D (2007) Levosimendan in acute pulmonary embolism. Anaesth Intensive Care 35:771–772

    CAS  PubMed  Google Scholar 

  83. Cicekcioglu F, Parlar AI et al (2008) Levosimendan and severe pulmonary hypertension during open heart surgery. Gen Thorac Cardiovasc Surg 56:563–565

    Article  PubMed  Google Scholar 

  84. Cholley B, Caruba T et al (2017) Effect of levosimendan on low cardiac output syndrome in patients with low ejection fraction undergoing coronary artery bypass grafting with cardiopulmonary bypass: the LICORN randomized clinical trial. JAMA 318:548–556

    Article  CAS  PubMed  Google Scholar 

  85. Mehta RH, Leimberger JD et al (2017) Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery. N Engl J Med 376:2032–2042

    Article  CAS  PubMed  Google Scholar 

  86. Landoni G, Lomivorotov VV et al (2017) Levosimendan for hemodynamic support after cardiac surgery. N Engl J Med 376:2021–2031

    Article  CAS  PubMed  Google Scholar 

  87. Guerrero-Orriach JL, Ariza-Villanueva D et al (2016) Cardiac, renal, and neurological benefits of preoperative levosimendan administration in patients with right ventricular dysfunction and pulmonary hypertension undergoing cardiac surgery: evaluation with two biomarkers neutrophil gelatinase-associated lipocalin and neuronal enolase. Ther Clin Risk Manag 12:623–630

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pollesello P, Parissis J et al (2016) Levosimendan meta-analyses: Is there a pattern in the effect on mortality? Int J Cardiol 209:77–83

    Article  CAS  PubMed  Google Scholar 

  89. Qiu J, Jia L et al (2017) Efficacy and safety of levosimendan in patients with acute right heart failure: a meta-analysis. Life Sci 184:30–36

    Article  CAS  PubMed  Google Scholar 

  90. Goldstein JA (2002) Pathophysiology and management of right heart ischemia. J Am Coll Cardiol 40:841–853

    Article  PubMed  Google Scholar 

  91. Berman M, Tsui S et al (2008) Life-threatening right ventricular failure in pulmonary hypertension: RVAD or ECMO? J Heart Lung Transplant 27:1188–1189

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-A. Greim.

Ethics declarations

Interessenkonflikt

B. Schäfer und C.-A. Greim geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

CME-Fragebogen

CME-Fragebogen

Welche Besonderheit weist der RV im Vergleich zum LV auf?

Die Ejektionsfraktion ist größer.

Die Wanddicke ist geringer.

Die Muskelgruppen kontrahieren langsamer.

Die Muskelgruppen kontrahieren ökonomischer.

Das Volumen ist kleiner.

Welche ist keine der dominierenden Ursachen für ein Rechtsherzversagen bei einem Intensivpatienten?

Septische Kardiomyopathie

Lungenembolie

Dekompensierte diastolische LV-Dysfunktion

Akutes Lungenversagen

Akuter Rechtsherzinfarkt

Was beschreibt der Begriff der ventrikulären Interdependenz?

Transseptaler Effekt von Volumen‑/Druckänderungen des einen Ventrikels auf die Funktion des anderen

Zunahme der LV-Vorlast bei einem akuten RV-Versagen

Effekt einer intrathorakalen Druckänderung auf die RV-Funktion

Kontraktilitätsminderung des RV durch eine kritisch hohe Wandspannung

Durch Zytokine verursachte Kontraktilitätsminderung bei Verbrennungen oder Verbrühungen

Was ist kein echokardiographisches Zeichen einer RV-Dysfunktion?

Paradoxe Septumbewegung

Trikuspidalinsuffizienz

Pulmonalarteriendilatation

LV-Exzentrizitätsindex < 1

RV-Dilatation/-Hypokinesie

Welchen Einflussfaktor muss man bei Messung der TAPSE berücksichtigen, da diese davon abhängig ist?

Pulmonalarterieller Druck

Vorlast

Systemischer Mitteldruck

Atemminutenvolumen

Nachlast

Was ist ein typischer Untersuchungsbefund bei Patienten mit chronischer Rechtsherzinsuffizienz?

Generalisiertes Auftreten von stehenden Hautfalten

Grobblasige Rasselgeräusche als Auskultationsbefund

Handrückenvenen bleiben nach Anheben über Herzniveau gefüllt

Ausgeprägte Splenomegalie (bis in Unterbauch reichend)

Hochfrequentes bandförmiges diastolisches Herzgeräusch

Nach der Diagnosestellung eines akuten intraoperativen Rechtsherzversagens ist welcher Behandlungsschritt nicht zwingend essenziell?

Senkung der RV-Nachlast

Sicherung des koronaren Perfusionsdrucks

Steigerung der RV-Kontraktilität

Optimierung der RV-Vorlast

Normalisierung der diastolischen LV-Dysfunktion

Was ist der pathophysiologische Wirkmechanismus von Levosimendan?

Zelluläre Kalziumsensibilisierung

Phosphodiesterasehemmung

Erhöhung der Produktion von cAMP

Blockade von Endothelinrezeptoren

Selektive pulmonale Vasokonstriktion

Welche Wirkung haben inhalative Vasodilatanzien im Gegensatz zu i.v.-Vasodilatanzien?

Erweiterung von Arteriolen in minderbelüfteten Arealen

Koronararterielle Minderperfusion

Zunahme des intrapulmonalen Rechts-links-Shunts

Anstieg des MAP

Reduktion der RV-Ejektionsfraktion

Was ist bei der Beatmungstherapie eines Patienten im akuten Rechtsherzversagen zu beachten?

Beachtung von Unterschieden bei der Verabreichung pulmonalselektiver Vasodilatatoren.

Eine invasive Beatmung ist zu bevorzugen bzw. anzustreben.

Fehlender Einfluss einer invasiven Beatmung auf venösen Rückstrom und diastolische LV-Funktion.

Lungenprotektive Beatmungsstrategien finden beim Rechtsherzversagen keine Anwendung.

Sowohl Hypokapnie als auch Hyperoxie steigern den pulmonalen Gefäßwiderstand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, B., Greim, CA. Akute perioperative Rechtsherzinsuffizienz. Anaesthesist 67, 61–78 (2018). https://doi.org/10.1007/s00101-017-0394-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-017-0394-1

Schlüsselwörter

Keywords

Navigation