Skip to main content

Advertisement

Log in

Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice

Späte inflammatorische und thrombotische Veränderungen in bestrahlten Herzen von C57BL/6-Wildtyp- und atherosklerosegefährdeten ApoE-defizienten Mäusen

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Radiation-induced heart disease represents a late complication of thoracic radiotherapy. We investigated the inflammatory and thrombotic response after local heart irradiation in wild-type and atherosclerosis-prone mice.

Material and methods

Atherosclerosis-prone ApoE−/− and C57BL/6 wild-type mice were sacrificed 20, 40, and 60 weeks after irradiation with 0.2, 2, 8, or 16 Gy. The expression of CD31, vascular cell adhesion molecule-1 (VCAM-1), thrombomodulin (TM), and CD45 were quantified by immunofluorescence staining of heart tissue sections.

Results

Microvascular density decreased at 40 weeks after 16 Gy in C57BL/6 but not in ApoE−/− mice. CD31 expression declined in C57BL/6 mice at 40 weeks (8 Gy), but increased in ApoE−/− mice at 20 (2/8/16 Gy) and 60 weeks (16 Gy). Capillary area decreased in C57BL/6 at 40 weeks (8/16 Gy) but increased in ApoE−/− mice at 20 weeks (16 Gy). Endocardial VCAM-1 expression remained unchanged. TM-positive capillaries decreased at 40 weeks (8/16 Gy) in C57BL/6 and at 60 weeks (2/16 Gy) in ApoE−/− mice. Leukocyte infiltration transiently rose 40 weeks after 8 Gy (only ApoE−/−) and 16 Gy. After receiving a low irradiation dose of 0.2 Gy, no significant changes were observed in any of the mouse models.

Conclusion

This study demonstrated that local heart irradiation affects microvascular structure and induces inflammatory/thrombotic responses in mice in a dose- and time-dependent manner. Thereby, significant prothrombotic changes were found in both strains, although they were progressive in ApoE−/− mice only. Proinflammatory responses, like the increase of adhesion molecules and leukocyte infiltration, were more pronounced and occurred at lower doses in ApoE−/− vs. C57BL/6 mice. These findings indicate that metabolic risk factors, such as decreased ApoE lipoproteins, may lead to an enhanced proinflammatory and prothrombotic late response in locally irradiated hearts.

Zusammenfassung

Hintergrund und Zielsetzung

Strahlungsinduzierte kardiovaskuläre Erkrankungen sind als Spätfolgen der thorakalen Radiotherapie bekannt. In dieser Arbeit untersuchten wir inflammatorische und thrombotische Marker nach lokaler Bestrahlung des Herzens in zu Atherosklerose neigenden und Wildtyp-Mäusen.

Material und Methoden

Atherosklerosegefährdete ApoE-defiziente (ApoE−/−) und C57BL/6-Wildtyp-Mäuse wurden mit 0,2 Gy, 2 Gy, 8 Gy oder 16 Gy bestrahlt und 20, 40 und 60 Wochen später euthanasiert. Die Proteinexpression von CD31, VCAM-1 (vascular endothelial adhesion molecule-1), Thrombomodulin (TM) und CD45 wurde mittels Immunfluoreszenzfärbung in Herzgewebeschnitten quantifiziert.

Ergebnisse

Die Kapillardichte nahm 40 Wochen nach 16-Gy-Bestrahlung in C57BL/6-, nicht aber in ApoE−/−-Mäusen ab. Die Expression von CD31 verminderte sich in C57BL/6-Mäusen nach 40 Wochen (8 Gy), stieg jedoch in ApoE−/−-Mäusen nach 20 (2/8/16 Gy) und 60 Wochen (16 Gy) an. Die Kapillargröße reduzierte sich in C57BL/6 40 Wochen nach Bestrahlung (8/16 Gy), vergrößerte sich aber in ApoE−/−-Mäusen 20 Wochen nach 16-Gy-Bestrahlung. Die endokardiale VCAM-1-Expression blieb nach Bestrahlung unverändert. Die Anzahl TM-positiver Kapillaren verminderte sich nach 40 Wochen (8/16 Gy) in C57BL/6- und nach 60 Wochen (2/16 Gy) in ApoE−/−-Mäusen. Die Infiltration von Leukozyten war 40 Wochen nach 8-Gy- (nur ApoE−/−) und 16-Gy-Bestrahlung vorübergehend erhöht. In beiden Mausstämmen konnten nach einer Bestrahlung mit einer niedrigen Dosis von 0,2 Gy keine signifikanten Veränderungen beobachtet werden.

Schlussfolgerung

In dieser Studie wurde gezeigt, dass die lokale Bestrahlung des Herzens die mikrovaskuläre Struktur beeinflusst und eine dosis- und zeitabhängige inflammatorische/thrombotische Reaktion in Mäusen hervorruft. Dabei treten signifikante prothrombotische Veränderungen in beiden untersuchten Mausstämmen auf, wobei diese nur in ApoE−/−-Mäusen progressiv verlaufen. Proinflammatorische Reaktionen, wie der Anstieg von Adhäsionsmolekülen und die Einwanderung von Leukozyten, treten vorwiegend in ApoE−/−-Mäusen und dort bereits bei niedrigeren Dosen, verglichen mit C57BL/6-Mäusen, auf. Diese Daten weisen daraufhin, dass metabolische Risikofaktoren, wie erniedrigte ApoE-Lipoproteine, zu einer verstärkten proinflammatorischen/prothrombotischen Spätreaktion in lokal bestrahlten Herzen führen könnten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams MJ, Hardenbergh PH, Constine LS, Lipshultz SE (2003) Radiation-associated cardiovascular disease. Crit Rev Oncol Hematol 45:55–75

    Article  PubMed  Google Scholar 

  2. McGale P, Darby SC, Hall P et al (2011) Incidence of heart disease in 35,000 women treated with radiotherapy for breast cancer in Denmark and Sweden. Radiother Oncol 100:167–175

    Article  PubMed  Google Scholar 

  3. Fakhrian K, Oechsner M, Kampfer S et al (2013) Advanced techniques in neoadjuvant radiotherapy allow dose escalation without increased dose to the organs at risk: planning study in esophageal carcinoma. Strahlenther Onkol 189:293–300

    Article  CAS  PubMed  Google Scholar 

  4. Pasler M, Georg D, Bartelt S et al (2013) Node-positive left-sided breast cancer: does VMAT improve treatment plan quality with respect to IMRT? Strahlenther Onkol 189:380–386

    Article  CAS  PubMed  Google Scholar 

  5. Aleman BM, Belt-Dusebout AW van den, Klokman WJ et al (2003) Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J Clin Oncol 21:3431–3439

    Article  PubMed  Google Scholar 

  6. Schultz-Hector S, Trott KR (2007) Radiation-induced cardiovascular diseases: is the epidemiologic evidence compatible with the radiobiologic data? Int J Radiat Oncol Biol Phys 67:10–18

    Article  CAS  PubMed  Google Scholar 

  7. Hull MC, Morris CG, Pepine CJ et al (2003) Valvular dysfunction and carotid, subclavian, and coronary artery disease in survivors of hodgkin lymphoma treated with radiation therapy. JAMA 290:2831–2837

    Article  CAS  PubMed  Google Scholar 

  8. Dorresteijn LD, Kappelle AC, Boogerd W et al (2002) Increased risk of ischemic stroke after radiotherapy on the neck in patients younger than 60 years. J Clin Oncol 20:282–288

    Article  PubMed  Google Scholar 

  9. Caligiuri G, Levy B, Pernow J et al (1999) Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci U S A 96:6920–6924

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Jurado JA, Bashir R, Burket MW (2008) Radiation-induced peripheral artery disease. Catheter Cardiovasc Interv 72:563–568

    Article  PubMed  Google Scholar 

  11. Patel DA, Kochanski J, Suen AW et al (2006) Clinical manifestations of noncoronary atherosclerotic vascular disease after moderate dose irradiation. Cancer 106:718–725

    Article  PubMed  Google Scholar 

  12. Stewart FA, Heeneman S, Te PJ et al (2006) Ionizing radiation accelerates the development of atherosclerotic lesions in ApoE−/− mice and predisposes to an inflammatory plaque phenotype prone to hemorrhage. Am J Pathol 168:649–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Seemann I, Gabriels K, Visser NL et al (2012) Irradiation induced modest changes in murine cardiac function despite progressive structural damage to the myocardium and microvasculature. Radiother Oncol 103:143–150

    Article  PubMed  Google Scholar 

  14. Gabriels K, Hoving S, Seemann I et al (2012) Local heart irradiation of ApoE(−/−) mice induces microvascular and endocardial damage and accelerates coronary atherosclerosis. Radiother Oncol 105:358–364

    Article  PubMed  Google Scholar 

  15. Meir KS, Leitersdorf E (2004) Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol 24:1006–1014

    Article  CAS  PubMed  Google Scholar 

  16. Mertens A, Holvoet P (2001) Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J 15:2073–2084

    Article  CAS  PubMed  Google Scholar 

  17. Quarmby S, Kumar P, Wang J et al (1999) Irradiation induces upregulation of CD31 in human endothelial cells. Arterioscler Thromb Vasc Biol 19:588–597

    Article  CAS  PubMed  Google Scholar 

  18. Gaugler MH, Vereycken-Holler V, Squiban C et al (2004) PECAM-1 (CD31) is required for interactions of platelets with endothelial cells after irradiation. J Thromb Haemost 2:2020–2026

    Article  CAS  PubMed  Google Scholar 

  19. Van de Wouwer M, Conway EM (2004) Novel functions of thrombomodulin in inflammation. Crit Care Med 32:S254–S261

    Article  Google Scholar 

  20. Wang J, Zheng H, Ou X et al (2002) Deficiency of microvascular thrombomodulin and up-regulation of protease-activated receptor-1 in irradiated rat intestine: possible link between endothelial dysfunction and chronic radiation fibrosis. Am J Pathol 160:2063–2072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Barjaktarovic Z, Schmaltz D, Shyla A et al (2011) Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays. PLoS One 6:e27811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Patties I, Habelt B, Rosin B et al (2014) Late effects of local irradiation on the expression of inflammatory markers in the Arteria saphena of C57BL/6 wild-type and ApoE-knockout mice. Radiat Environ Biophys 53:117–124

    Article  CAS  PubMed  Google Scholar 

  23. Nakashima Y, Raines EW, Plump AS et al (1998) Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 18:842–851

    Article  CAS  PubMed  Google Scholar 

  24. Hoving S, Heeneman S, Gijbels MJ et al (2012) Irradiation induces different inflammatory and thrombotic responses in carotid arteries of wildtype C57BL/6J and atherosclerosis-prone ApoE(−/−) mice. Radiother Oncol 105:365–370

    Article  CAS  PubMed  Google Scholar 

  25. Zibara K, Chettab K, McGregor B et al (2001) Increased ICAM-1 and PECAM-1 transcription levels in the heart of Apo-E deficient mice in comparison to wild type (C57BL6). Thromb Haemost 85:908–914

    CAS  PubMed  Google Scholar 

  26. Tenger C, Zhou X (2003) Apolipoprotein E modulates immune activation by acting on the antigen-presenting cell. Immunology 109:392–397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Muller WA (1995) The role of PECAM-1 (CD31) in leukocyte emigration: studies in vitro and in vivo. J Leukoc Biol 57:523–528

    CAS  PubMed  Google Scholar 

  28. Van der Meeren A, Vandamme, Squiban C et al (2003) Inflammatory reaction and changes in expression of coagulation proteins on lung endothelial cells after total-body irradiation in mice. Radiat Res 160:637–646

    Article  CAS  PubMed  Google Scholar 

  29. Jaenke RS, Robbins ME, Bywaters T et al (1993) Capillary endothelium. Target site of renal radiation injury. Lab Invest 68:396–405

    CAS  PubMed  Google Scholar 

  30. Lusis AJ (2000) Atherosclerosis. Nature 407:233–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Massberg S, Brand K, Gruner S et al (2002) A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. J Exp Med 196:887–896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Molla M, Gironella M, Miquel R et al (2003) Relative roles of ICAM-1 and VCAM-1 in the pathogenesis of experimental radiation-induced intestinal inflammation. Int J Radiat Oncol Biol Phys 57:264–273

    Article  CAS  PubMed  Google Scholar 

  33. Quarmby S, Hunter RD, Kumar S (2000) Irradiation induced expression of CD31, ICAM-1 and VCAM-1 in human microvascular endothelial cells. Anticancer Res 20:3375–3381

    CAS  PubMed  Google Scholar 

  34. Epperly MW, Sikora CA, DeFilippi SJ et al (2002) Pulmonary irradiation-induced expression of VCAM-I and ICAM-I is decreased by manganese superoxide dismutase-plasmid/liposome (MnSOD-PL) gene therapy. Biol Blood Marrow Transplant 8:175–187

    Article  CAS  PubMed  Google Scholar 

  35. Richter KK, Fink LM, Hughes BM et al (1998) Differential effect of radiation on endothelial cell function in rectal cancer and normal rectum. Am J Surg 176:642–647

    Article  CAS  PubMed  Google Scholar 

  36. Richter KK, Fink LM, Hughes BM et al (1997) Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother Oncol 44:65–71

    Article  CAS  PubMed  Google Scholar 

  37. Robbins ME, Jaenke RS, Bywaters T et al (1993) Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat Res 135:351–364

    Article  CAS  PubMed  Google Scholar 

  38. Hallahan D, Kuchibhotla J, Wyble C (1996) Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res 56:5150–5155

    CAS  PubMed  Google Scholar 

  39. Stewart FA, Poele JA te, Van der Wal AF et al (2001) Radiation nephropathy – the link between functional damage and vascular mediated inflammatory and thrombotic changes. Acta Oncol 40:952–957

    Article  CAS  PubMed  Google Scholar 

  40. Glass CK, Witztum JL (2001) Atherosclerosis. the road ahead. Cell 104:503–516

    Article  CAS  PubMed  Google Scholar 

  41. Darby SC, Ewertz M, McGale P et al (2013) Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med 368:987–998

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with ethical guidelines

Acknowledgments

We are grateful to Britt Rosin for technical support with the preparation of tissue sections and immunofluorescence staining. We thank Gabriela Aust and fellow workers for technical support with tissue cutting. We are grateful to Tobias Polte and colleagues for technical support with the TissueFax fluorescence microscope unit.

The project was funded by the European commission grant FP7, 211403, CARDIORISK.

Conflict of interest

I. Patties, J. Haagen, W. Dörr, G. Hildegrandt, and A. Glasow state that there are no conflicts of interest. All national guidelines on the care and use of laboratory animals have been followed and the necessary approval was obtained from the relevant authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Patties.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patties, I., Haagen, J., Dörr, W. et al. Late inflammatory and thrombotic changes in irradiated hearts of C57BL/6 wild-type and atherosclerosis-prone ApoE-deficient mice. Strahlenther Onkol 191, 172–179 (2015). https://doi.org/10.1007/s00066-014-0745-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-014-0745-7

Keywords

Schlüsselwörter

Navigation