Skip to main content
Log in

Prone-positioned knee arthroscopy for isolated retropatellar cartilage defects with gel-type autologous chondrocyte implantation

Kniearthroskopie in Bauchlage bei isolierten retropatellaren Knorpeldefekten mit autologer Chondrozytenimplantation in Gelform

  • Operative Techniken
  • Published:
Operative Orthopädie und Traumatologie Aims and scope Submit manuscript

Abstract

Objective

Treatment of isolated retropatellar cartilage defects using current gel-type regenerative methods requires settlement of the gel to the underlying subchondral bone under gravity; thus, prone positioned arthroscopy is used.

Indications

Isolated retropatellar contained cartilage defect size >2.5 cm2. Age <40 years, epiphyseal closure, cartilage defect grade 3/4 (International Cartilage Repair Society).

Contraindications

Cartilage defects at medial or lateral femorotibial compartments, at the trochlea, with degenerative genesis, rheumatoid arthritis, local infection, patellar malalignment, patellofemoral dysplasia, knee instability, knee malalignment >3°, kissing lesions.

Surgical technique

Two-stage procedure: At initial arthroscopy, chondrocytes were harvested. At the second stage, the patient was positioned prone and the leg with a thigh tourniquet was fixed in a leg holder. Removal of table extension below the knee and support of foot in sling to prevent knee hyperextension. Placement of 2 lateral portals. Lesion visualized and debrided, followed by aspiration of intra-articular fluid. A loop, placed posterior to the patellar ligament using a lasso, was used to suspend a weight to expand the patellofemoral space. The lesion was then dried using a sponge. NOVOCART® Inject (TETEC, Reutlingen, Germany) administered onto the defect. Gel was allowed to solidify for 15 min and operation was completed.

Postoperative management

Knee locked in extension using a brace for 6 weeks. Continuous passive motion applied and incrementally increased until full range of motion (ROM) at week 6. Weight-bearing as tolerated was allowed with the knee in extension. Routine clinical follow-up after 3, 6 and 12 months.

Results

Mean age of the 5 patients was 23 ± 6 (range 14–30) years; mean follow-up time after surgery 28 ± 7 (range 20–40) months. All patients returned to full activity without residual knee ROM restriction. Clinical examination at the latest follow-up revealed a Kujala score of 90 ± 12 points and Lysholm score of 95 ± 5 points. MRI showed filled cartilage defects in all patients. Mocart score was 63 ± 7 points. Cartilage was inhomogeneous and hyperintense at the repaired site. Quantitative measurement of the patella mobility of the operated knee under a translating force of 10 N showed medial and lateral displacements of 21 ± 5 and 15 ± 2 mm and on the healthy side 22 ± 5 and 19 ± 3 mm, respectively.

Zusammenfassung

Operationsziel

Die Behandlung isolierter retropatellarer Knorpeldefekte mit den derzeit eingesetzten regenerativen Methoden auf Gelbasis erfordert eine Anlagerung des Gels an den subchondralen Knochen unter Schwerkraft, daher Arthroskopie in Bauchlage.

Indikationen

Isolierter, retropatellar begrenzter Knorpelschaden, mindestens 2,5 cm2. Alter unter 40 Jahren, Epiphysenverschluss, Läsion ICRS (International Cartilage Repair Society) Grad 3 und 4.

Kontraindikationen

Knorpelschäden im medialen oder lateralen femorotibialen Kompartiment, im Bereich der Trochlea, mit degenerativer Genese, rheumatoide Arthritis, lokale Infektion, patellares Malalignment, femoropatellare Dysplasie, Knieinstabilität, Knie-Malalignment >3°, „kissing lesions“.

Operationstechnik

Zweizeitiges Verfahren, zuerst arthroskopische Entnahme von Chondrozyten. Zweiter Schritt: Positionierung in Bauchlage, Fixierung des Beins mit Oberschenkeltourniquet im Beinhalter, Entfernung des Beinteils vom Operationstisch. Der Fuß wurde in eine Schlaufe gehängt, um eine Hyperextension im Kniegelenk zu vermeiden. Anlage zweier lateraler Portale. Visualisierung und Débridement der Läsion, Entfernen intraartikulärer Flüssigkeit. Eine mittels Lasso hinter das Ligamentum patellae geführte Schlinge diente zur Aufhängung eines Gewichtes, um damit den femoropatellaren Raum zu erweitern. Nach Trocknen des Defektbereichs Applikation von NOVOCART® Inject (TETEC, Reutlingen). Für die Adhärenz der Zellen wurden 15 min abgewartet, anschließend wurde der operative Eingriff abgeschlossen.

Weiterbehandlung

Streckschiene für 6 Wochen. Passive Bewegung mit CPM(„continuous passive motion“)-Schiene unter schrittweiser Steigerung der Flexion, bis der volle Bewegungsumfang in der 6. Woche erreicht wurde. Vollbelastung war in Streckstellung erlaubt, sobald vom Patienten toleriert. Klinische Nachuntersuchungen routinemäßig nach 3, 6 und 12 Monaten.

Ergebnisse

Das mittlere Alter (n = 5) lag zum Zeitpunkt der Operation bei 23 ± 6 (14–30) Jahren, die mittlere Follow-up-Zeit bei 28 ± 7 (20–40) Monaten. Alle Patienten kehrten ohne Bewegungseinschränkung des Knies zum normalen Aktivitätsniveau zurück. Klinisch Kujala-Score 90 ± 12, Lysholm-Score 95 ± 5 Punkte. Alle MRT-Untersuchungen zeigten einen aufgefüllten Defekt, Mocart-Score 63 ± 7 Punkte. Knorpel an der sanierten Stelle inhomogen und hyperintens. Patellaverschieblichkeit unter 10 N erreichte nach medial 21 ± 4, nach lateral 15 ± 2 mm. Auf der gesunden Seite betrug die Verschieblichkeit nach medial 22 ± 4, nach lateral 19 ± 3 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG (1997) Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 13(4):456–460. https://doi.org/10.1016/s0749-8063(97)90124-9

    Article  CAS  PubMed  Google Scholar 

  2. Widuchowski W, Widuchowski J, Trzaska T (2007) Articular cartilage defects: study of 25,124 knee arthroscopies. Knee 14(3):177–182. https://doi.org/10.1016/j.knee.2007.02.001

    Article  CAS  PubMed  Google Scholar 

  3. Goudakos IG, Konig C, Schottle PB, Taylor WR, Singh NB, Roberts I, Streitparth F, Duda GN, Heller MO (2009) Stair climbing results in more challenging patellofemoral contact mechanics and kinematics than walking at early knee flexion under physiological-like quadriceps loading. J Biomech 42(15):2590–2596. https://doi.org/10.1016/j.jbiomech.2009.07.007

    Article  PubMed  Google Scholar 

  4. Marcacci M, Kon E, Delcogliano M, Filardo G, Busacca M, Zaffagnini S (2007) Arthroscopic autologous osteochondral grafting for cartilage defects of the knee: prospective study results at a minimum 7‑year follow-up. Am J Sports Med 35(12):2014–2021. https://doi.org/10.1177/0363546507305455

    Article  PubMed  Google Scholar 

  5. Dewan AK, Gibson MA, Elisseeff JH, Trice ME (2014) Evolution of autologous chondrocyte repair and comparison to other cartilage repair techniques. Biomed Res Int. https://doi.org/10.1155/2014/272481

    Article  PubMed  PubMed Central  Google Scholar 

  6. Siebold R, Sartory N, Yang Y, Feil S, Paessler HH (2011) Prone position for minimal invasive or all-arthroscopic autologous chondrocyte implantation at the patella. Knee Surg Sports Traumatol Arthrosc 19(12):2036–2039. https://doi.org/10.1007/s00167-011-1505-1

    Article  PubMed  Google Scholar 

  7. Schreiner MM, Raudner M, Marlovits S, Bohndorf K, Weber M, Zalaudek M, Rohrich S, Szomolanyi P, Filardo G, Windhager R, Trattnig S (2019) The MOCART (magnetic resonance observation of cartilage repair tissue) 2.0 knee score and atlas. Cartilage. https://doi.org/10.1177/1947603519865308

    Article  PubMed  Google Scholar 

  8. Wirth B, Meier N, Koch PP, Swanenburg J (2013) Development and evaluation of a German version of the Tegner activity scale for measuring outcome after anterior cruciate ligament injury. Sportverletz Sportschaden 27(1):21–27. https://doi.org/10.1055/s-0032-1330752

    Article  CAS  PubMed  Google Scholar 

  9. Dammerer D, Liebensteiner MC, Kujala UM, Emmanuel K, Kopf S, Dirisamer F, Giesinger JM (2018) Validation of the German version of the Kujala score in patients with patellofemoral instability: a prospective multi-centre study. Arch Orthop Trauma Surg 138(4):527–535. https://doi.org/10.1007/s00402-018-2881-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ota S, Nakashima T, Morisaka A, Omachi T, Ida K, Kawamura M (2010) Is latero-medial patellar mobility related to the range of motion of the knee joint after total knee arthroplasty? Man Ther 15(6):574–578. https://doi.org/10.1016/j.math.2010.06.009

    Article  PubMed  Google Scholar 

  11. Powers CM, Witvrouw E, Davis IS, Crossley KM (2017) Evidence-based framework for a pathomechanical model of patellofemoral pain: 2017 patellofemoral pain consensus statement from the 4th International Patellofemoral Pain Research Retreat, Manchester, UK: part 3. Br J Sports Med 51(24):1713–1723. https://doi.org/10.1136/bjsports-2017-098717

    Article  PubMed  Google Scholar 

  12. Ota S, Ohko H (2018) Sex differences in passive lateral and medial patellar mobility in healthy young adults. J Back Musculoskelet Rehabil 31(1):127–132. https://doi.org/10.3233/BMR-169704

    Article  PubMed  Google Scholar 

  13. Kim TK, Phillips M, Bhandari M, Watson J, Malhotra R (2017) What differences in morphologic features of the knee exist among patients of various races? A systematic review. Clin Orthop Relat Res 475(1):170–182. https://doi.org/10.1007/s11999-016-5097-4

    Article  CAS  PubMed  Google Scholar 

  14. Ota S, Kurokouchi K, Takahashi S, Yoda M, Yamamoto R, Sakai T (2017) Relationship between patellar mobility and patellofemoral joint cartilage degeneration after anterior cruciate ligament reconstruction. Nagoya J Med Sci 79(4):487–495. https://doi.org/10.18999/nagjms.79.4.487

    Article  PubMed  PubMed Central  Google Scholar 

  15. Welsch GH, Mamisch TC, Quirbach S, Zak L, Marlovits S, Trattnig S (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19(5):1253–1262. https://doi.org/10.1007/s00330-008-1249-6

    Article  PubMed  Google Scholar 

  16. Steinwachs M, Cavalcanti N, Mauuva Venkatesh Reddy S, Werner C, Tschopp D, Choudur HN (2019) Arthroscopic and open treatment of cartilage lesions with BST-CARGEL scaffold and microfracture: a cohort study of consecutive patients. Knee 26(1):174–184. https://doi.org/10.1016/j.knee.2018.11.015

    Article  PubMed  Google Scholar 

  17. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8(4):355–368. https://doi.org/10.1055/s-2004-861764

    Article  PubMed  Google Scholar 

  18. Donoso R, Figueroa D, Espinoza J, Yanez C, Saavedra J (2019) Osteochondral autologous transplantation for treating patellar high-grade chondral defects: a systematic review. Orthop J Sports Med. https://doi.org/10.1177/2325967119876618

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Becker MD.

Ethics declarations

Conflict of interest

M.E. Kayaalp, Y.U. Cirdi, S. Kopf and R. Becker declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case. All patient evaluations were made in line with the Declaration of Helsinki ethical principles.

Additional information

Redaktion

A.B. Imhoff, München

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kayaalp, M.E., Cirdi, Y.U., Kopf, S. et al. Prone-positioned knee arthroscopy for isolated retropatellar cartilage defects with gel-type autologous chondrocyte implantation. Oper Orthop Traumatol 33, 436–444 (2021). https://doi.org/10.1007/s00064-021-00710-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00064-021-00710-1

Keywords

Schlüsselwörter

Navigation