Skip to main content

Advertisement

Log in

Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

To study the clinical potential of a deep learning neural network (convolutional neural networks [CNN]) as a supportive tool for detection of intracranial aneurysms from 3D time-of-flight magnetic resonance angiography (TOF-MRA) by comparing the diagnostic performance to that of human readers.

Methods

In this retrospective study a pipeline for detection of intracranial aneurysms from clinical TOF-MRA was established based on the framework DeepMedic. Datasets of 85 consecutive patients served as ground truth and were used to train and evaluate the model. The ground truth without annotation was presented to two blinded human readers with different levels of experience in diagnostic neuroradiology (reader 1: 2 years, reader 2: 12 years). Diagnostic performance of human readers and the CNN was studied and compared using the χ2-test and Fishers’ exact test.

Results

Ground truth consisted of 115 aneurysms with a mean diameter of 7 mm (range: 2–37 mm). Aneurysms were categorized as small (S; <3 mm; N = 13), medium (M; 3–7 mm; N = 57), and large (L; >7 mm; N = 45) based on the diameter. No statistically significant differences in terms of overall sensitivity (OS) were observed between the CNN and both of the human readers (reader 1 vs. CNN, P = 0.141; reader 2 vs. CNN, P = 0.231). The OS of both human readers was improved by combination of each readers’ individual detections with the detections of the CNN (reader 1: 98% vs. 95%, P = 0.280; reader 2: 97% vs. 94%, P = 0.333).

Conclusion

A CNN is able to detect intracranial aneurysms from clinical TOF-MRA data with a sensitivity comparable to that of expert radiologists and may have the potential to improve detection rates of incidental findings in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACA:

Anterior cerebral artery

ADPKD:

Autosomal dominant polycystic kidney disease

CAD:

Computer-aided detection

CNN:

Deep learning neural network

CTA:

Computed tomography angiography

DSA:

Digital subtraction angiography

ICA:

Internal carotid artery

MCA:

Middle cerebral artery

MRA:

Magnetic resonance angiography

OECD:

Organization for Economic Cooperation and Development

PACS:

Picture archiving and communication system

POST:

Posterior circulation

T:

Tesla

References

  1. McDonald RJ, Schwartz KM, Eckel LJ, Diehn FE, Hunt CH, Bartholmai BJ, Erickson BJ, Kallmes DF. The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad Radiol. 2015;22:1191–8.

    Article  Google Scholar 

  2. OECD (2018) Magnetic Resonance Imaging (MRI) exams (indicator). https://doi.org/10.1787/1d89353f-en. Accessed on 6 December 2018.

  3. Berbaum KS, Franken EA, Dorfman DD, Rooholamini SA, Kathol MH, Barloon TJ, Behlke FM, Sato Y, Lu CH, el-Khoury GY, Flickinger FW, Montgomery WJ. Satisfaction of search in diagnostic radiology. Invest Radiol. 1990;25:133–40.

    Article  CAS  Google Scholar 

  4. Lindgren AE, Koivisto T, Björkman J, Von Und Zu Fraunberg M, Helin K, Jääskeläinen JE, Frösen J. Irregular shape of Intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke. 2016;47:1219–26.

    Article  Google Scholar 

  5. Thompson BG, Brown RD Jr, Amin-Hanjani S, Broderick JP, Cockroft KM, Connolly ES Jr, Duckwiler GR, Harris CC, Howard VJ, Johnston SC, Meyers PM, Molyneux A, Ogilvy CS, Ringer AJ, Torner J; American Heart Association Stroke Council, Council on Cardiovascular and Stroke Nursing, and Council on Epidemiology and Prevention; American Heart Association; American Stroke Association. Guidelines for the management of patients with Unruptured Intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2368–400.

    Article  Google Scholar 

  6. Backes D, Vergouwen MD, Tiel Groenestege AT, Bor AS, Velthuis BK, Greving JP, Algra A, Wermer MJ, van Walderveen MA, terBrugge KG, Agid R, Rinkel GJ. PHASES score for prediction of Intracranial aneurysm growth. Stroke. 2015;46:1221–6.

    Article  Google Scholar 

  7. Choi HH, Cho YD, Jeon JP, Yoo DH, Moon J, Lee J, Kang HS, Cho WS, Kim JE, Zhang L, Han MH. Growth of untreated unruptured small-sized aneurysms (≺7 mm): incidence and related factors. Clin Neuroradiol. 2018;28:183–9.

    Article  Google Scholar 

  8. Molyneux AJ, Kerr RS, Yu LM, Clarke M, Sneade M, Yarnold JA, Sandercock P; International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International Subarachnoid Aneurysm Trial ( ISAT ) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet. 2005;366:809–17.

    Article  Google Scholar 

  9. Etminan N, Brown RD Jr, Beseoglu K, Juvela S, Raymond J, Morita A, Torner JC, Derdeyn CP, Raabe A, Mocco J, Korja M, Abdulazim A, Amin-Hanjani S, Al-Shahi Salman R, Barrow DL, Bederson J, Bonafe A, Dumont AS, Fiorella DJ, Gruber A, Hankey GJ, Hasan DM, Hoh BL, Jabbour P, Kasuya H, Kelly ME, Kirkpatrick PJ, Knuckey N, Koivisto T, Krings T, Lawton MT, Marotta TR, Mayer SA, Mee E, Pereira VM, Molyneux A, Morgan MK, Mori K, Murayama Y, Nagahiro S, Nakayama N, Niemelä M, Ogilvy CS, Pierot L, Rabinstein AA, Roos YB, Rinne J, Rosenwasser RH, Ronkainen A, Schaller K, Seifert V, Solomon RA, Spears J, Steiger HJ, Vergouwen MD, Wanke I, Wermer MJ, Wong GK, Wong JH, Zipfel GJ, Connolly ES Jr, Steinmetz H, Lanzino G, Pasqualin A, Rüfenacht D, Vajkoczy P, McDougall C, Hänggi D, LeRoux P, Rinkel GJ, Macdonald RL. The unruptured intracranial aneurysm treatment score: a multidisciplinary consensus. Neurology. 2015;85:881–9.

    Article  Google Scholar 

  10. Walendy V, Stang A. Clinical management of unruptured intracranial aneurysm in Germany: a nationwide observational study over a 5-year period. BMJ Open. 2017;7:e12294.

    Article  Google Scholar 

  11. Brisman J, Song J, Newell D. Cerebral aneurysms. N Engl J Med. 2006;355:928–39.

    Article  CAS  Google Scholar 

  12. Wardlaw JM, White PM. The detection and management of unruptured intracranial aneurysms. Brain. 2000;123:205–21.

    Article  Google Scholar 

  13. White PM, Wardlaw JM, Easton V. Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology. 2000;217:361–70.

    Article  CAS  Google Scholar 

  14. Okahara M, Kiyosue H, Yamashita M, Nagatomi H, Hata H, Saginoya T, Sagara Y, Mori H. Diagnostic accuracy of magnetic resonance angiography for cerebral aneurysms in correlation with 3D-digital subtraction angiographic images: a study of 133 aneurysms. Stroke. 2002;33:1803–8.

    Article  Google Scholar 

  15. Prevedello LM, Erdal BS, Ryu JL, Little KJ, Demirer M, Qian S, White RD. Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology. 2017;285:923–31.

    Article  Google Scholar 

  16. Larson DB, Chen MC, Lungren MP, Halabi SS, Stence NV, Langlotz CP. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs. Radiology. 2018;287:313–22.

    Article  Google Scholar 

  17. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, Katayama Y, Fukumoto S, Choppin A, Shimahara Y, Miki Y. Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology. 2019;290:187–94.

    Article  Google Scholar 

  18. Sichtermann T, Faron A, Sijben R, Teichert N, Freiherr J, Wiesmann M. Deep-learning-based detection of Intracranial aneurysms in 3D TOF-MRA. AJNR Am J Neuroradiol. 2019;40:25-32.

    Article  PubMed  Google Scholar 

  19. Yushkevich PA, Piven J, Hazlett CH, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31:1116–28.

    Article  Google Scholar 

  20. Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.

    Article  Google Scholar 

  21. Rodríguez JD, Pérez A, Lozano JA. Sensitivity analysis of k‑fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell. 2010;32:569–75.

    Article  Google Scholar 

  22. Miki S, Hayashi N, Masutani Y, Nomura Y, Yoshikawa T, Hanaoka S, Nemoto M, Ohtomo K. Computer-assisted detection of cerebral aneurysms in MR angiography in a routine image-reading environment: effects on diagnosis by radiologists. AJNR Am J Neuroradiol. 2016;37:1038–43.

    Article  CAS  Google Scholar 

  23. Nomura Y, Masutani Y, Miki S, Nemoto M, Hanaoka S, Yoshikawa T, Hayashi N, Ohtomo K. Performance improvement in computerized detection of cerebral aneurysms by retraining classifier using feedback data collected in routine reading environment. J Biomed Graph Comput. 2014;4:12–21.

    Google Scholar 

  24. Štepán-Buksakowska IL, Accurso JM, Diehn FE, Huston J, Kaufmann TJ, Luetmer PH, Wood CP, Yang X, Blezek DJ, Carter R, Hagen C, Hořínek D, Hejčl A, Roček M, Erickson BJ. Computer-aided diagnosis improves detection of small intracranial aneurysms on MRA in a clinical setting. AJNR Am J Neuroradiol. 2014;35:1897–902.

    Article  Google Scholar 

  25. Nakao T, Hanaoka S, Nomura Y, Sato I, Nemoto M, Miki S, Maeda E, Yoshikawa T, Hayashi N, Abe O. Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography. J Magn Reson Imaging. 2018;47:948–53.

    Article  Google Scholar 

  26. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC; International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.

    Article  Google Scholar 

  27. Li MH, Li YD, Tan HQ, Gu BX, Chen YC, Wang W, Chen SW, Hu DJ. Contrast-free MRA at 3.0 T for the detection of intracranial aneurysms. Neurology. 2011;77:667–76.

    Article  Google Scholar 

Download references

Funding

The work was supported by Nvidia Corporation (Santa Clara, CA, USA) with the donation of a Titan XP GPU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Faron.

Ethics declarations

Conflict of interest

A. Faron, T. Sichtermann, N. Teichert, J.A. Luetkens, A. Keulers, O. Nikoubashman, J. Freiherr, A. Mpotsaris and M. Wiesmann declare that they have no competing interests.

Additional information

A. Faron and T. Sichtermann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faron, A., Sichtermann, T., Teichert, N. et al. Performance of a Deep-Learning Neural Network to Detect Intracranial Aneurysms from 3D TOF-MRA Compared to Human Readers. Clin Neuroradiol 30, 591–598 (2020). https://doi.org/10.1007/s00062-019-00809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-019-00809-w

Keywords

Navigation