Skip to main content
Log in

How two sesquiterpenes drive horse manure rolling behavior in wild giant pandas

  • Commentary
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

In this work, we discussed and counter-commented Paul J. Weldon's comments on our recent paper (Zhou et al. Proc Natl Acad Sci USA 117:32493, 2020a), where we reported that BCP/BCPO (beta-caryophyllene/caryophyllene oxide) in fresh horse manure is sufficient to drive manure rolling behavior (HMR) in giant panda and attenuate the cold sensitivity of mice by directly targeting and inhibiting transient receptor potential melastatin 8 (TRPM8), an archetypical cold-activated ion channel of mammals. The main question we arise in this response is: “which is the reasonable target of BCP/BCPO? Parasites or TRPM8?” Based on the knowledge of TRPM8-mediated cooling sensation, interaction between BCP/BCPO and TRPM8, BCP/BCPO concentration in horse manure samples, correlation between HMR frequency and habitat temperature, insecticidal activity of BCP/BCPO and thermal ecology of parasites, we prefer a simple idea that BCP/BCPO-induced TRPM8 antagonism bestows the wild giant pandas with cold tolerance at low-ambient temperatures. Compared with the speculation of insecticidal activity induced by HMR behavior, our study provided a comprehensive mechanism to confirm a physiological target of BCP/BCPO during the highly cold-correlated behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Bautista DM, Siemens J, Glazer JM et al (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    Article  CAS  Google Scholar 

  • Calvo RR, Meegalla SK, Parks DJ et al (2012) Discovery of vinylcycloalkyl-substituted benzimidazole TRPM8 antagonists effective in the treatment of cold allodynia. Bioorg Med Chem Lett 22:1903–1907

    Article  CAS  Google Scholar 

  • Chuang HH, Neuhausser WM, Julius D (2004) The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43:859–869

    Article  CAS  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ et al (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  CAS  Google Scholar 

  • Dhaka A, Murray AN, Mathur J et al (2007) TRPM8 is required for cold sensation in mice. Neuron 54:371–378

    Article  CAS  Google Scholar 

  • Dhaka A, Earley TJ, Watson J et al (2008) Visualizing cold spots: TRPM8-expressing sensory neurons and their projections. J Neurosci 28:566–575

    Article  CAS  Google Scholar 

  • Diver MM, Cheng YF, Julius D (2019) Structural insights into TRPM8 inhibition and desensitization. Science 365:1434

    Article  CAS  Google Scholar 

  • Eccles R (1994) Menthol and related cooling compounds. J Pharm Pharmacol 46:618–630

    Article  CAS  Google Scholar 

  • Falotico T, Verderane MP, Resende BD et al (2004) Anting in a semi-free-ranging group of brown capuchin monkeys (Cebus apella). Folia Primatol 75:372–372

    Google Scholar 

  • Falotico T, Labruna MB, Verderane MP et al (2007) Repellent efficacy of formic acid and the abdominal secretion of carpenter ants (Hymenoptera: Formicidae) against Amblyomma ticks (Acari: Ixodidae). J Med Entomol 44:718–721

    Article  CAS  Google Scholar 

  • Kimura R (2001) Volatile substances in feces, of feral urine and urine-marked feces horses. Can J Anim Sci 81:411–420

    Article  CAS  Google Scholar 

  • Knowlton WM, Palkar R, Lippoldt EK et al (2013) A sensory-labeled line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold Pain, and cooling-mediated analgesia. J Neurosci 33:2837–2848

    Article  CAS  Google Scholar 

  • Leal B, Zamora E, Fuentes A et al (2020) Questing by tick larvae (Acari: Ixodidae): a review of the influences that affect off-host survival. Ann Entomol Soc Am 113:425–438

    Article  Google Scholar 

  • Ma SJ, Jia R, Guo ML et al (2020) Insecticidal activity of essential oil from Cephalotaxus sinensis and its main components against various agricultural pests. Ind Crop Prod 150:112403

    Article  CAS  Google Scholar 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  Google Scholar 

  • Nilius B, Voets T (2007) Neurophysiology—channelling cold reception. Nature 448:147–148

    Article  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  Google Scholar 

  • Takashima Y, Daniels RL, Knowlton W et al (2007) Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. J Neurosci 27:14147–14157

    Article  CAS  Google Scholar 

  • Winter JM, Partridge TF, Wallace D et al (2021) Modeling the sensitivity of blacklegged ticks (Ixodes scapularis) to temperature and land cover in the northeastern United States. J Med Entomol 58:416–427

    PubMed  Google Scholar 

  • Xu LZ, Han YL, Chen XY et al (2020) Molecular mechanisms underlying menthol binding and activation of TRPM8 ion channel. Nat Commun 11:3790

    Article  CAS  Google Scholar 

  • Yang S, Lu X, Wang Y et al (2020) A paradigm of thermal adaptation in penguins and elephants by tuning cold activation in TRPM8. Proc Natl Acad Sci USA 117:8633–8638

    Article  CAS  Google Scholar 

  • Yin Y, Wu MY, Zubcevic L et al (2018) Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237–241

    Article  CAS  Google Scholar 

  • Zhou WL, Yang SL, Li BW et al (2020a) Why wild giant pandas frequently roll in horse manure. Proc Natl Acad Sci USA 117:32493–32498

    Article  CAS  Google Scholar 

  • Zhou WL, Gao K, Ma YJ et al (2020b) Seasonal dynamics of parasitism and stress physiology in wild giant pandas. Conserv Physiol 8:085

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (31821001) and Chinese Academy of Sciences (XDB31020000 and QYZDY-SSW-SMC019) to F.W; National Natural Science Foundation of China (21761142002, 31930015), Chinese Academy of Sciences (SAJC201606 and QYZDJ-SSW-SMC012) and Science and Technology Department of Yunnan Province (2019ZF003) to R.L.; National Natural Science Foundation of China (31640071 and 31770835) to S.Y.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren Lai or Fuwen Wei.

Ethics declarations

Conflict of interest

The authors has no relevant animal ethics or competing interests to disclose.

Additional information

Communicated by Marko Rohlfs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, W., Yang, S., Lai, R. et al. How two sesquiterpenes drive horse manure rolling behavior in wild giant pandas. Chemoecology 31, 221–223 (2021). https://doi.org/10.1007/s00049-021-00344-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-021-00344-6

Keywords

Navigation