Skip to main content
Log in

Identification of cuticular compounds collected from Callosobruchus rhodesianus (Pic) eliciting heterospecific mating behavior with male Callosobruchus maculatus (F.)

  • Original Article
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Callosobruchus seed beetles (Coleoptera: Chrysomelidae: Bruchinae) are pests of stored legumes in tropical and subtropical regions. The cuticular surfaces of female Callosobruchus seed beetles contain a contact sex pheromone, which elicits copulatory behavior in congeneric males. Asymmetric cross-copulatory behavior was observed between C. maculatus and C. rhodesianus despite considerable differences in the structures of their contact sex pheromones. C. maculatus uses dicarboxylic acid, whereas C. rhodesianus uses two ketone compounds in conjunction with similar synergistic cuticular hydrocarbon blends in both cases. Male C. maculatus exhibited copulatory behavior with females of both C. maculatus and C. rhodesianus, but male C. rhodesianus mated only with congeneric females. To establish the reasons for the asymmetric cross-copulatory behavior of C. maculatus, we tried to identify the heterospecific mate-eliciting compounds in the cuticles collected from virgin C. rhodesianus females. The compounds were fractionated using acid-base partitioning and chromatography techniques and then assayed for their ability to elicit male copulatory activity. Gas chromatography–mass spectrometry (GC–MS) analysis of the active acidic fraction revealed the presence of three dicarboxylic acids: 2-methylsuberic acid (2-methyloctanedioic acid) (1), 3-methylsuberic acid (3-methyloctanedioic acid) (2), and nonanedioic acid (3). The synergistic effect was compared using synthetic standards and natural hydrocarbons. When the compounds were combined with the natural hydrocarbons, compounds 1 and 2 elicited significant copulatory activity in male C. maculatus. In contrast, relative to the effect of natural hydrocarbons alone, compound 3 did not exhibit significant copulatory activity when combined with natural hydrocarbons. The results demonstrated that the asymmetric cross-copulatory behavior of C. maculatus is induced by the presence of contact sex pheromone analogs on the cuticular surface of female C. rhodesianus. In combination with previous reports, although a saltational evolution was hypothesized for the contact sex pheromones of C. rhodesianus, this species continues to produce dicarboxylic acids functioning as pheromones that are structurally similar to those secreted by closely related species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allison JD, Roff DA, Cardé RT (2008) Genetic independence of female signal form and male receiver design in the almond moth, Cadra cautella. J Evol Biol 21:1666–1672. doi:10.1111/j.1420-9101.2008.01595.x

    Article  CAS  PubMed  Google Scholar 

  • Baker CT (2002) Mechanism for saltational shifts in pheromone communication systems. Proc Natl Acad Sci USA 99:13368–13370. doi:10.1073/pnas.222539799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borowiec I (1987) The genera of seed-beetles (Coleoptera: Bruchidae). Pol Pis Entomol 57: 3–207

    Google Scholar 

  • Bostedor RG, Karkas JD, Arison BH, Bansal VS, Vaidya S, Germershausen JI, Kurtz MM, Bergstrom JD (1997) Farnesol-derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol. J Biol Chem 272:9197–9203. doi:10.1074/jbc.272.14.9197

    Article  CAS  PubMed  Google Scholar 

  • Droney DC, Musto CJ, Mancuso K, Roelofs WL, Linn CE Jr (2012) The response to selection for broad male response to female sex pheromone and its implications for divergence in close-range mating behavior in the European corn borer moth, Ostrinia nubilalis. J Chem Ecol 38:1504–1512. doi:10.1007/s10886-012-0208-5

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Mori K, Takikawa H, Leal WS, Schal C (2004) Behavioral activity of stereoisomers and a new component of the contact sex pheromone of female German cockroach, Blattella germanica. J Chem Ecol 30:1839–1848. doi:10.1023/B:JOEC.0000042405.05895.3a

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Nojima S, Mori K, Schal C (2008a) New contact sex pheromone components of the German cockroach, Blattella germanica, predicted from the proposed biosynthetic pathway. J Chem Ecol 34:229–237. doi:10.1007/s10886-007-9409-8

    Article  CAS  PubMed  Google Scholar 

  • Eliyahu D, Nojima S, Capracotta SS, Comins DL, Schal C (2008b) Identification of cuticular lipids eliciting interspecific courtship in the German cockroach, Blattella germanica. Naturwissenschaften 95:403–412. doi:10.1007/s00114-007-0339-7

    Article  CAS  PubMed  Google Scholar 

  • Gemeno C, Schal C (2004) Sex pheromones of cockroaches. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 179–247

    Chapter  Google Scholar 

  • Lassance JM, Groot TA, Liénard AM, Antony B, Borgwardt C, Andersson F, Hedenström F, Heckel GD, Löfstedt C (2010) Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:486–489. doi:10.1038/nature09058

    Article  CAS  PubMed  Google Scholar 

  • Niehuis O, Buellesbach J, Gibson DJ, Pothmann D, Hanner C, Mutti SN, Judson KA, Gadau J, Ruther J, Schmitt T (2013) Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature 494:345–348. doi:10.1038/nature11838

    Article  CAS  PubMed  Google Scholar 

  • Nishida R, Fukami H (1983) Female sex pheromone of the German cockroach, Blattella germanica. Mem Coll Agric Kyoto Univ 122: 1–24

    CAS  Google Scholar 

  • Nojima S, Shimomura K, Honda H, Yamamoto I, Ohsawa K (2007) Contact sex pheromone components of the cowpea weevil, Callosobruchus maculatus. J Chem Ecol 33:923–933. doi:10.1007/s10886-007-9266-5

    Article  CAS  PubMed  Google Scholar 

  • Phelan PL (1992) Evolution of sex pheromones and the role of asymmetric tracking. In: Roitberg BD, Isman MB (eds) Insect chemical ecology: an evolutionary approach. Chapman and Hall, New York, pp 265–314

    Google Scholar 

  • Phelan PL (1997) Genetic and phylogenetics in the evolution of sex pheromones. In: Cardé TR, Minks KA (eds) Insect pheromone research new directions. Chapman and Hall, New York, pp 563–579

    Chapter  Google Scholar 

  • Rees DP (1996) Coleoptera. In: Subramanyam B, Hagstrum DW (eds) Integrated management of insects in stored products. Marcel Dekker, New York, pp 1–40

    Google Scholar 

  • Rees DP (2004) Beetles (order: Coleoptera). In: Rees DP (ed) Insects of stored products. CSIRO Publishing, Canberra, pp 11–120

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Roelofs LW, Liu W, Hao G, Jiao H, Rooney PA, Linn EC Jr (2002) Evolution of moth sex pheromones via ancestral genes. Proc Natl Acad Sci USA 99:13621–13626. doi:10.1073/pnas.152445399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schal C, Burns EL, Jurenka RA, Blomquist GJ (1990) A new component of the female sex pheromone of Blattella germanica (L.) (Dictyoptera: Blattellidae) and interaction with other pheromone components. J Chem Ecol 16:1997–2008. doi:10.1007/BF01020511

    Article  CAS  PubMed  Google Scholar 

  • Shimomura K, Akasaka K, Yajima A, Mimura T, Yajima S, Ohsawa K (2010a) Contact sex pheromone components of the seed beetle, Callosobruchus analis (F.). J Chem Ecol 36:955–965. doi:10.1007/s10886-010-9841-z

    Article  CAS  PubMed  Google Scholar 

  • Shimomura K, Mimura T, Ishikawa S, Yajima S, Ohsawa K (2010b) Variation in mate recognition specificities among four Callosobruchus seed beetles. Entomol Exp Appl 135:315–322. doi:10.1111/j.1570-7458.2010.00994.x

    Article  Google Scholar 

  • Shimomura K, Matsui S, Ohsawa K, Yajima S (2016) Saltational evolution of contact sex pheromone compounds of Callosobruchus rhodesianus (Pic). Chemoecology 26:15–23. doi:10.1007/s00049-015-0204-7

    Article  CAS  Google Scholar 

  • Shirangi RT, Dufour DH, Williams MT, Carroll BS (2009) Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol 7:e100168. doi:10.1371/journal.pbio.1000168

    Article  Google Scholar 

  • Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97. doi:10.1038/hdy.2008.55

    Article  CAS  PubMed  Google Scholar 

  • Stetter H, Klauke E (1953) Eine neue methode zur darstellung langkettiger carbonsäuren, IV. mitteil.: darstellung einiger verzweigter mono- und dicarbonsäuren. Chem Ber 86:513–518. doi:10.1002/cber.19530860413

    Article  CAS  Google Scholar 

  • Symonds MRE, Elgar MA (2008) The evolution of pheromone diversity. Trends Ecol Evol 23:220–228. doi:10.1016/j.tree.2007.11.009

    Article  PubMed  Google Scholar 

  • Tanaka K, Ohsawa K, Honda H, Yamamoto I (1981) Copulation release pheromone, erectin, from the azuki bean weevil (Callosobruchus chinensis L.). J Pestic Sci 6:75–82. doi:10.1584/jpestics.6.75

    Article  CAS  Google Scholar 

  • Tuda M, Rönn J, Buranapanichpan S, Wasano N, Arnqvist G (2006) Evolutionary diversification of the bean beetle genus Callosobruchus (Coleoptera: Bruchidae): traits associated with storedproduct pest status. Mol Ecol 15:3541–3551. doi:10.1111/j.1365-294X.2006.03030.x

    Article  CAS  PubMed  Google Scholar 

  • Wyatt TD (2003) Pheromones and animal behavior: communication by smell and taste. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Xue B, Rooney PA, Kajikawa M, Okada N, Roelofs LW (2007) Novel sex pheromone desaturases in the genomes of corn borers generated through gene duplication and retroposon fusion. Proc Natl Acad Sci USA 104:4467–4472. doi:10.1073/pnas.0700422104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yajima A, Akasaka K, Nakai T, Maehara H, Nukada T, Ohrui H, Yabuta G (2006) Direct determination of the stereoisomer constitution by 2D-HPLC and stereochemistry-pheromone activity relationship of the copulation release pheromone of the cowpea weevil, Callosobruchus maculatus. Tetrahedron 62:4590–4596. doi:10.1016/j.tet.2006.02.059

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Yajima.

Additional information

Communicated by Michael Heethoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimomura, K., Matsui, S., Ohsawa, K. et al. Identification of cuticular compounds collected from Callosobruchus rhodesianus (Pic) eliciting heterospecific mating behavior with male Callosobruchus maculatus (F.). Chemoecology 27, 65–73 (2017). https://doi.org/10.1007/s00049-017-0231-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-017-0231-7

Keywords

Navigation