Skip to main content
Log in

Recognition of prey odor in wild meerkats

  • Short Communication
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

Although mongooses are well-known to use odor cues in social communication, whether they also use olfaction in foraging is unknown. In this study, I investigated the olfactory ability of wild meerkats to recognize prey items that vary in frequency in their diet. Meerkats aged from 28 days to 2 years were presented with cotton-buds scented with common prey (larvae), less-common prey (scorpions, crickets), non-prey (dung beetles) or a control (no scent). Biting behavior and time spent sniffing the cotton-bud were recorded. Meerkats bit cotton-buds that smelled of larvae more often than cotton-buds that smelled of non-prey or control. They bit cotton-buds that smelled of crickets or scorpions at an intermediate rate. Meerkats’ age and sex did not affect the response. Hence, meerkats can discriminate the odor of their prey from the odor of non-prey items, and tend to show preference for frequent prey over less-common prey. Furthermore, meerkats may use olfactory cues for short-distance detection of prey, but experiments are needed to determine the specific phases of the foraging process where olfaction is involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Abulude F (2004) Proximate composition, minerals content and functional properties of cricket (Acheta spp.). Pak J Sci Ind Res 47:212–213

    Google Scholar 

  • Abulude F, Ogunkoya M, Esiet E, Kayode B, Oni J (2006) Studies on scorpion (Androctonus australis): nutritional and anti-nutritional factors. J Entomol 3:156–160

    Article  Google Scholar 

  • Amo L, Jansen JJ, Dam NM, Dicke M, Visser ME (2013) Birds exploit herbivore-induced plant volatiles to locate herbivorous prey. Ecol Lett 16:1348–1355

    Article  PubMed  Google Scholar 

  • Apfelbach R (1973) Olfactory sign stimulus for prey selection in polecats (Putorius putorius L.). Z Tierpsychol 33:270–273

  • Bahlman JW, Kelt DA (2007) Use of olfaction during prey location by the common vampire bat (Desmodus rotundus). Biotropica 39:147–149

    Article  Google Scholar 

  • Bousquet CA, Sumpter DJ, Manser MB (2011) Moving calls: a vocal mechanism underlying quorum decisions in cohesive groups. Proc R Soc Lond B 278:1482–1488

    Article  Google Scholar 

  • Brotherton P, Clutton-Brock T, O’riain M, Gaynor D, Sharpe L, Kansky R, McIlrath G (2001) Offspring food allocation by parents and helpers in a cooperative mammal. Behav Ecol 12:590–599

    Article  Google Scholar 

  • Clutton-Brock TH, Gaynor D, McIlrath GM, Maccoll ADC, Kansky R, Chadwick P, Manser M, Skinner JD, Brotherton PNM (1999) Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. J Anim Ecol 68:672–683. doi:10.1046/j.1365-2656.1999.00317.x

    Article  Google Scholar 

  • Clutton-Brock TH, Hodge SJ, Flower TP (2008) Group size and the suppression of subordinate reproduction in Kalahari meerkats. Anim Behav 76:689–700

    Article  Google Scholar 

  • Cooper WE Jr (1991) Responses to prey chemicals by a lacertid lizard, Podarcis muralis: prey chemical discrimination and poststrike elevation in tongue-flick rate. J Chem Ecol 17:849–863

    Article  PubMed  Google Scholar 

  • Cunningham GB, Van Buskirk RW, Hodges MJ, Weimerskirch H, Nevitt GA (2006) Behavioural responses of blue petrel chicks (Halobaena caerulea) to food-related and novel odours in a simple wind tunnel. Antarct Sci 18:345–352

    Article  Google Scholar 

  • Doolan SP, Macdonald DW (1996) Diet and foraging behaviour of group-living meerkats, Suricata suricatta, in the southern Kalahari. J Zool 239:697–716

    Article  Google Scholar 

  • Gibbons ME, Ferguson AM, Lee DR (2005) Both learning and heritability affect foraging behaviour of red-backed salamanders, Plethodon cinereus. Anim Behav 69:721–732

    Article  Google Scholar 

  • Glaser AS (2006) Prey detection and foraging strategies in meerkats (Suricata Suricatta). Universität Zürich

  • Gorman ML (1976) A mechanism for individual recognition by odour in Herpestes auropunctatus (Carnivora: Viverridae). Anim Behav 24:141–145

    Article  Google Scholar 

  • Hoefler CD, Taylor M, Jakob EM (2002) Chemosensory response to prey in Phidippus audax (Araneae, Salticidae) and Pardosa milvina (Araneae, Lycosidae). J Arachnol 30:155–158

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P, Heiberger RM (2008) multcomp: simultaneous inference in general parametric models. R package version 10–0

  • Houpt KA, Hintz HF, Shepherd P (1978) The role of olfaction in canine food preferences. Chem Senses 3:281–290

    Article  Google Scholar 

  • Hughes NK, Price CJ, Banks PB (2010) Predators are attracted to the olfactory signals of prey. Plos One 5: e13114 doi:10.1371/journal.pone.0013114

  • Johannesen A, Dunn AM, Morrell LJ (2012) Olfactory cue use by three-spined sticklebacks foraging in turbid water: prey detection or prey location? Anim Behav 84:151–158

    Article  Google Scholar 

  • Jones G, Webb PI, Sedgeley JA, O’Donnell CFJ (2003) Mysterious Mystacina: how the New Zealand short-tailed bat (Mystacina tuberculata) locates insect prey. J Exp Biol 206:4209–4216. doi:10.1242/jeb.00678

    Article  PubMed  Google Scholar 

  • Jordan NR (2007) Scent-marking investment is determined by sex and breeding status in meerkats. Anim Behav 74:531–540

    Article  Google Scholar 

  • Jordan NR, Cherry MI, Manser MB (2007) Latrine distribution and patterns of use by wild meerkats: implications for territory and mate defence. Anim Behav 73:613–622

    Article  Google Scholar 

  • Jordan NR, Mwanguhya F, Kyabulima S, Rüedi P, Cant MA (2010) Scent marking within and between groups of wild banded mongooses. J Zool 280:72–83

    Article  Google Scholar 

  • Jordan NR, Mwanguhya F, Kyabulima S, Rueedi P, Hodge SJ, Cant MA (2011) Scent marking in wild banded mongooses: 3. Intrasexual overmarking in females. Anim Behav 81:51–60. doi:10.1016/j.anbehav.2010.10.007

    Article  Google Scholar 

  • Lai Y-T, Chen J-H, Lee L-L (2011) The chemosensory ability of the predatory leech Whitmania laevis (Arhynchobdellida: Haemopidae) for prey searching. Chemoecology 21:67–74

    Article  Google Scholar 

  • Langley WM (1984) Recognition of prey species by their odors in the grasshopper mouse (Onychomys leucogaster). Behav Processes 9:277–280

    Article  CAS  PubMed  Google Scholar 

  • Laska M, Freist P, Krause S (2007) Which senses play a role in nonhuman primate food selection? A comparison between squirrel monkeys and spider monkeys. Am J Primatol 69:282–294

    Article  PubMed  Google Scholar 

  • Le Roux A, Cherry MI, Manser MB (2008) The effects of population density and sociality on scent marking in the yellow mongoose. J Zool 275:33–40

    Article  Google Scholar 

  • Leclaire S, Nielsen JF, Thavarajah NK, Manser M, Clutton-Brock TH (2013) Odour-based kin discrimination in the cooperatively breeding meerkat. Biol Lett 9:20121054

    Article  PubMed  PubMed Central  Google Scholar 

  • Mares R, Young AJ, Levesque DL, Harrison N, Clutton-Brock TH (2011) Responses to intruder scents in the cooperatively breeding meerkat: sex and social status differences and temporal variation. Behav Ecol 22:594–600. doi:10.1093/beheco/arr021

    Article  Google Scholar 

  • Nevo O, Heymann EW (2015) Led by the nose: olfaction in primate feeding ecology. Evolutionary Anthropology: Issues, News, and Reviews 24:137–148

  • Piep M, Radespiel U, Zimmermann E, Schmidt S, Siemers BM (2008) The sensory basis of prey detection in captive-born grey mouse lemurs, Microcebus murinus. Anim Behav 75:871–878

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raguso RA, Willis MA (2002) Synergy between visual and olfactory cues in nectar feeding by naıve hawkmoths, Manduca sexta. Anim Behav 64:685–695

    Article  Google Scholar 

  • Recher HF, Recher JA (1969) Comparative foraging efficiency of adult and immature Little Blue Herons (Florida caerulea). Anim Behav 17:320–322

    Article  Google Scholar 

  • Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens. Herpetologica 167–172

  • Siemers BM, Goerlitz HR, Robsomanitrandrasana E, Piep M, Ramanamanjato J-B, Rakotondravony D, Ramilijaona O, Ganzhorn JU (2007) Sensory basis of food detection in wild Microcebus murinus. Int J Primatol 28:291–304

    Article  Google Scholar 

  • Stevens M (2013) Sensory ecology, behaviour, and evolution. Oxford University Press

  • Thornton A, Hodge SJ (2009) The development of foraging microhabitat preferences in meerkats. Behav Ecol 20:103–110

    Article  Google Scholar 

  • Thornton A, McAuliffe K (2006) Teaching in wild meerkats. Science 313:227–229

    Article  CAS  PubMed  Google Scholar 

  • Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P (2013) Edible insects: future prospects for food and feed security. Food and agriculture organization of the United nations (FAO)

  • Vincent SE, Shine R, Brown GP (2005) Does foraging mode influence sensory modalities for prey detection in male and female filesnakes, Acrochordus arafurae? Anim Behav 70:715–721

    Article  Google Scholar 

  • Xiaoming C, Ying F, Hong Z, Zhiyong C (2010) Review of the nutritive value of edible insects. Forest insects as food: humans bite back 85

  • Ylönen H, Sundell J, Tiilikainen R, Eccard JA, Horne T (2003) Weasels’ (Mustela nivalis nivalis) preference for olfactory cues of the vole (Clethrionomys glareolus). Ecology 84:1447–1452

    Article  Google Scholar 

  • Zimmer-Faust RK (1987) Crustacean chemical perception: towards a theory on optimal chemoreception. Biol Bull 172:10–29

    Article  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Acknowledgements

I thank T. Clutton-Brock and M. Manser for providing access to the animals, and A. Szabo, N. Thavarajah, and J. Samson for their help in the field. I am grateful to the Kotze family and other farmers neighboring the Kuruman River Reserve for graciously allowing me to work on their land and to the Northern Cape for permission to conduct the research. All research protocols were approved by the University of Pretoria Ethics committee (Project No. EC011-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Leclaire.

Ethics declarations

Funding

This study was supported by a Fondation Fyssen postdoctoral grant. During the span of this study, the Kalahari Meerkat Project was financed by Cambridge, Zurich and Duke Universities (Duke’s contribution was through a National Science Foundation grant IOS-1021633 to Christine Drea). I relied on records of individual identities and/or life histories maintained by the Kalahari Meerkat Project, which has been supported by European Research Council Grant (No. 294494) to T. Clutton-Brock and Swiss National Science Foundation Grant (31003A_13676) to M. Manser.

Conflict of interest

The author declares that she has no conflict of interest.

Additional information

Communicated by Michael Heethoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclaire, S. Recognition of prey odor in wild meerkats. Chemoecology 27, 85–90 (2017). https://doi.org/10.1007/s00049-017-0229-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-017-0229-1

Keywords

Navigation