Skip to main content

Advertisement

Log in

γ- and δ-lactones as fumarate esters analogues and their neuroprotective effects

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The γ-butyrolactone and δ-valerolactone structural units are present in different natural products with significant pharmacological properties. Fumaric acid ester-based drugs are used for the treatment of psoriasis and, more recently, multiple sclerosis. We synthesized different γ-butyrolactone and δ-valerolactone derivatives where the fumarate moiety is forced into a lactone ring in search of strategies to maintain the anti-inflammatory activity of fumaric acid esters limiting the side effects and enhancing the bioavailability. The structures of all synthesized compounds obtained were identified on the basis of their spectral data. The toxicity profile as well as the neuroprotective properties of the synthesized derivatives were evaluated in human neuroblastoma SH-SY5Y cell line. All tested fumaric esters presented lower cytotoxicity and higher neuroprotective properties, in comparison to dimethyl fumarate. Pre-treatment of cells with at least seven compounds for 24 h lead to a significantly neuroprotection against H2O2-induced cell damage. Our results demonstrate that SH-SY5Y cells are suitable cellular model to evaluate the neuroprotective role of fumaric acid esters, and support further evaluation of BG-12 derivatives aimed at decreasing cytotoxicity and limiting the side effects for improvement of treatments for multiple sclerosis and psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cateni F, Zilic J, Zacchigna M, Bonivento P, Frausin F, Scarcia V. Synthesis and biological properties of new α-methylene-γ- butyrolactones and α,β-unsaturated δ-lactones. Eur J Med Chem. 2006;41:192–200. https://doi.org/10.1016/j.ejmech.2005.10.009

    Article  CAS  PubMed  Google Scholar 

  2. Kitson RRA, Millemaggi A, Taylor RJK. The renaissance of α-methylene-γ-butyrolactones: new synthetic approaches. Angew Chem Int Ed 2009;48:9426–51. https://doi.org/10.1002/anie.200903108

    Article  CAS  Google Scholar 

  3. Solhaug A, Eriksen GS, Holme JA. Mechanisms of action and toxicity of the mycotoxin alternariol: a review. Basic Clin Pharm Toxicol. 2016;119:533–9. https://doi.org/10.1111/bcpt.12635

    Article  CAS  Google Scholar 

  4. Blair HA. Dimethyl fumarate: a review in moderate to severe plaque psoriasis. Drugs. 2018;78:123–30. https://doi.org/10.1007/s40265-017-0854-6

    Article  CAS  PubMed  Google Scholar 

  5. Landeck L, Asadullah K, Amasuno A, Pau-Charles I, Mrowietz U. Dimethyl fumarate (DMF) vs. monoethyl fumarate (MEF) salts for the treatment of plaque psoriasis: a review of clinical data. Arch Dermatol Res. 2018;475–83. https://doi.org/10.1007/s00403-018-1825-9

  6. Smith D. Fumaric acid esters for psoriasis: a systematic review. Ir J Med Sci. 2017;186:161–77. https://doi.org/10.1007/s11845-016-1470-2

    Article  CAS  PubMed  Google Scholar 

  7. Mrowietz U, Morrison PJ, Suhrkamp I, Kumanova M, Clement B. The pharmacokinetics of fumaric acid esters reveal their in vivo effects. Trends Pharm Sci. 2018;39:1–12. https://doi.org/10.1016/j.tips.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  8. Montes Diaz G, Hupperts R, Fraussen J, Somers V. Dimethyl fumarate treatment in multiple sclerosis: recent advances in clinical and immunological studies. Autoimmun Rev. 2018;17:1240–50. https://doi.org/10.1016/j.autrev.2018.07.001

    Article  CAS  PubMed  Google Scholar 

  9. Nair S, Doh ST, Chan JY, Kong AN, Cai L. Regulatory potential for concerted modulation of Nrf2- and Nfkb1-mediated gene expression in inflammation and carcinogenesis. Br J Cancer. 2008;99:2070–82. https://doi.org/10.1038/sj.bjc.6604703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campolo M, Casili G, Biundo F, Crupi R, Cordaro M, Cuzzocrea S, et al. The neuroprotective effect of dimethyl fumarate in an MPTP-mouse model of Parkinson’s disease: involvement of reactive oxygen species/nuclear factor-κB/nuclear transcription factor related to NF-E2. Antioxid Redox Signal. 2017;27:453–71. https://doi.org/10.1089/ars.2016.6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gesser B, Rasmussen MK, Raaby L, Rosada C, Johansen C, Kjellerup RB, et al. Dimethylfumarate inhibits MIF-induced proliferation of keratinocytes by inhibiting MSK1 and RSK1 activation and by inducing nuclear p-c-Jun (S63) and p-p53 (S15) expression. Inflamm Res. 2011;60:643–53. https://doi.org/10.1007/s00011-011-0316-7

    Article  CAS  PubMed  Google Scholar 

  12. Linker RA, Lee DH, Ryan S, Van Dam AM, Conrad R, Bista P, et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain. 2011;134:678–92. https://doi.org/10.1093/brain/awq386

    Article  PubMed  Google Scholar 

  13. McMahon M, Itoh K, Yamamoto M, Hayes JD. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J Biol Chem. 2003;278:21592–600. https://doi.org/10.1074/jbc.M300931200

    Article  CAS  PubMed  Google Scholar 

  14. Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;1304–9. https://doi.org/10.1016/j.freeradbiomed.2009.07.035

  15. Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol. 2015;225:R83–99. https://doi.org/10.1530/JOE-14-0662

    Article  CAS  PubMed  Google Scholar 

  16. Lu MC, Ji JA, Jiang ZY, You QD. The Keap1–Nrf2–ARE pathway as a potential preventive and therapeutic target: an update. Med Res Rev. 2016;924–63. https://doi.org/10.1002/med.21396

  17. Naismith RT, Wundes A, Ziemssen T, Jasinska E, Freedman MS, Lembo AJ, et al. Diroximel fumarate demonstrates an improved gastrointestinal tolerability profile compared with dimethyl fumarate in patients with relapsing–remitting multiple sclerosis: results from the randomized, double-blind, phase III EVOLVE-MS-2 study. CNS Drugs. 2020;34:185–96. https://doi.org/10.1007/s40263-020-00700-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Min J, Cohan S, Alvarez E, Sloane J, Phillips JT, van der Walt A, et al. Real-world characterization of dimethyl fumarate-related gastrointestinal events in multiple sclerosis: management strategies to improve persistence on treatment and patient outcomes. Neurol Ther. 2019;8:109–19. https://doi.org/10.1007/s40120-019-0127-2

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palte MJ, Wehr A, Tawa M, Perkin K, Leigh-Pemberton R, Hanna J, et al. Improving the gastrointestinal tolerability of fumaric acid esters: early findings on gastrointestinal events with diroximel fumarate in patients with relapsing-remitting multiple sclerosis from the phase 3, open-label EVOLVE-MS-1 study. Adv Ther. 2019;36:3154–65. https://doi.org/10.1007/s12325-019-01085-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sejbaek T, Nybo M, Petersen T, Illes Z. Real-life persistence and tolerability with dimethyl fumarate. Mult Scler Relat Disord. 2018;24:42–46. https://doi.org/10.1016/j.msard.2018.05.007

    Article  PubMed  Google Scholar 

  21. Zecca C, Antozzi CG, Torri Clerici V, Ferrazzini M, Mantegazza RE, Rossi S, et al. Severe multiple sclerosis reactivation during prolonged lymphopenia after dimethyl fumarate discontinuation. Acta Neurol Scand. 2018;623–5. https://doi.org/10.1111/ane.12882

  22. Sainz de la Maza S, Medina S, Villarrubia N, Costa-Frossard L, Monreal E, Tejeda-Velarde A, et al. Factors associated with dimethyl fumarate-induced lymphopenia. J Neurol Sci. 2019;398:4–8. https://doi.org/10.1016/j.jns.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  23. Mehta D, Miller C, Arnold DL, Bame E, Bar-Or A, Gold R, et al. Effect of dimethyl fumarate on lymphocytes in RRMS: implications for clinical practice. Neurology. 2019;92:e1724–38. https://doi.org/10.1212/WNL.0000000000007262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cateni F, Nitti P, Zacchigna M, Procida G, Lassiani L, Drioli S, et al. Synthesis and antitumor activity of α-alkyliden-γ-lactones. Int J Pharm Res. 2018;10:1–8. https://doi.org/10.31838/ijpr/2018.10.04.001

    Article  Google Scholar 

  25. Chakrabarty K, Defrenza I, Denora N, Drioli S, Forzato C, Franco M, et al. Enzymatic resolution of α-methyleneparaconic acids and evaluation of their biological activity. Chirality 2015;27:239–46. https://doi.org/10.1002/chir.22419

    Article  CAS  PubMed  Google Scholar 

  26. Schmitt J, Rosumeck S, Thomaschewski G, Sporbeck B, Haufe E, Nast A. Efficacy and safety of systemic treatments for moderate-to-severe psoriasis: meta-analysis of randomized controlled trials. Br J Dermatol. 2014;170:274–303. https://doi.org/10.1111/bjd.12663

    Article  CAS  PubMed  Google Scholar 

  27. Kupchan SM, Fessler DC, Eakin MA, Giacobbe TJ. Reactions of alpha methylene lactone tumor inhibitors with model biological nucleophiles. Science. 1970;168:376–8. https://doi.org/10.1126/science.168.3929.376

    Article  CAS  PubMed  Google Scholar 

  28. Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, et al. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal. 2016;9:rs10–10. https://doi.org/10.1126/scisignal.aaf7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kavian N, Mehlal S, Jeljeli M, Saidu NEB, Nicco C, Cerles O, et al. The Nrf2-antioxidant response element signaling pathway controls fibrosis and autoimmunity in scleroderma. Front Immunol. 2018;9. https://doi.org/10.3389/fimmu.2018.01896

  30. Brian J, Tabner BSP, Stuart Turnbull BSP, Omar MA, El-Agnaf BSP, David, et al. Production of reactive oxygen species from aggregating proteins implicated in Alzheimers disease, Parkinsons disease and other neurodegenerative diseases. Curr Top Med Chem. 2005;1:507–17. https://doi.org/10.2174/1568026013394822

    Article  Google Scholar 

  31. Zhou N, Tang Y, Keep RF, Ma X, Xiang J. Antioxidative effects of Panax notoginseng saponins in brain cells. Phytomedicine. 2014;21:1189–95. https://doi.org/10.1016/j.phymed.2014.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47. https://doi.org/10.1038/35041687

    Article  CAS  PubMed  Google Scholar 

  33. Li J, Li W, Su J, Liu W, Altura BT, Altura BM. Hydrogen peroxide induces apoptosis in cerebral vascular smooth muscle cells: possible relation to neurodegenerative diseases and strokes. Brain Res Bull. 2003;62:101–6. https://doi.org/10.1016/j.brainresbull.2003.08.011

    Article  CAS  PubMed  Google Scholar 

  34. Han SM, Kim JM, Park KK, Chang YC, Pak SC. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement Altern Med. 2014;14. https://doi.org/10.1186/1472-6882-14-286

  35. Nirmaladevi D, Venkataramana M, Chandranayaka S, Ramesha A, Jameel NM, Srinivas C. Neuroprotective effects of bikaverin on H2O2-induced oxidative stress mediated neuronal damage in SH-SY5Y cell line. Cell Mol Neurobiol. 2014;34:973–85. https://doi.org/10.1007/s10571-014-0073-6

    Article  CAS  PubMed  Google Scholar 

  36. Feng C, Luo T, Zhang S, Liu K, Zhang Y, Luo Y, et al. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways. Mol Med Rep. 2016;13:4205–14. https://doi.org/10.3892/mmr.2016.5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. González-Sarrías A, Núñez-Sánchez MÁ, Tomás-Barberán FA, Espín JC. Neuroprotective effects of bioavailable polyphenol-derived metabolites against oxidative stress-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. J Agric Food Chem. 2017;65:752–8. https://doi.org/10.1021/acs.jafc.6b04538

    Article  CAS  PubMed  Google Scholar 

  38. Singh N, Vijayanti S, Saha L, Bhatia A, Banerjee D, Chakrabarti A. Neuroprotective effect of Nrf2 activator dimethyl fumarate, on the hippocampal neurons in chemical kindling model in rat. Epilepsy Res. 2018;143:98–104. https://doi.org/10.1016/j.eplepsyres.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  39. Lastres-Becker I, García-Yagüe AJ, Scannevin RH, Casarejos MJ, Kügler S, Rábano A, et al. Repurposing the NRF2 activator dimethyl fumarate as therapy against synucleinopathy in Parkinson’s disease. Antioxid Redox Signal. 2016;25:61–77. https://doi.org/10.1089/ars.2015.6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Campolo M, Casili G, Lanza M, Filippone A, Paterniti I, Cuzzocrea S, et al. Multiple mechanisms of dimethyl fumarate in amyloid β-induced neurotoxicity in human neuronal cells. J Cell Mol Med. 2018;22:1081–94. https://doi.org/10.1111/jcmm.13358

    Article  CAS  PubMed  Google Scholar 

  41. Majkutewicz I, Kurowska E, Podlacha M, Myślińska D, Grembecka B, Ruciński J, et al. Age-dependent effects of dimethyl fumarate on cognitive and neuropathological features in the streptozotocin-induced rat model of Alzheimer’s disease. Brain Res. 2018;1686:19–33. https://doi.org/10.1016/j.brainres.2018.02.016

    Article  CAS  PubMed  Google Scholar 

  42. Ellrichmann G, Petrasch-Parwez E, Lee DH, Reick C, Arning L, Saft C, et al. Efficacy of fumaric acid esters in the R6/2 and YAC128 models of huntington’s disease. PLoS ONE. 2011;6:e16172 https://doi.org/10.1371/journal.pone.0016172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ahmed SMU, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;585–97. https://doi.org/10.1016/j.bbadis.2016.11.005

  44. Rühl M, Kühn B, Roos J, Maier TJ, Steinhilber D, Karas M. Elucidation of chemical modifier reactivity towards peptides and proteins and the analysis of specific fragmentation by matrix-assisted laser desorption/ionization collision-induced dissociation tandem mass spectrometry. Rapid Commun Mass Spectrom. 2019;33:40–49. https://doi.org/10.1002/rcm.8223

    Article  CAS  PubMed  Google Scholar 

  45. Rostami-Yazdi M, Clement B, Mrowietz U. Pharmacokinetics of anti-psoriatic fumaric acid esters in psoriasis patients. Arch Dermatol Res. 2010;302:531–8.

    Article  CAS  Google Scholar 

  46. Stoof TJ, Flier J, Sampat S, Nieboer C, Tensen CP, Boorsma DM. The antipsoriatic drug dimethylfumarate strongly suppresses chemokine production in human keratinocytes and peripheral blood mononuclear cells. Br J Dermatol. 2001;144:1114–20. https://doi.org/10.1046/j.1365-2133.2001.04220.x

    Article  CAS  PubMed  Google Scholar 

  47. Haskew-Layton RE, Payappilly JB, Smirnova NA, Ma TC, Chan KK, Murphy TH, et al. Controlled enzymatic production of astrocytic hydrogen peroxide protects neurons from oxidative stress via an Nrf2-independent pathway. Proc Natl Acad Sci USA. 2010;107:17385–90. https://doi.org/10.1073/pnas.1003996107

    Article  PubMed  Google Scholar 

  48. Parodi B, Rossi S, Morando S, Cordano C, Bragoni A, Motta C, et al. Fumarates modulate microglia activation through a novel HCAR2 signaling pathway and rescue synaptic dysregulation in inflamed CNS. Acta Neuropathol. 2015;130:279–95. https://doi.org/10.1007/s00401-015-1422-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bang J, Kim H, Kim J, Yu CM. Asymmetric aldol reaction of allenoates: regulation for the selective formation of isomeric allenyl or alkynyl aldol adduct. Org Lett. 2015;17:1573–6. https://doi.org/10.1021/acs.orglett.5b00454

    Article  CAS  PubMed  Google Scholar 

  50. Drioli S, Felluga F, Forzato C, Nitti P, Pitacco G, Valentin E. Synthesis of (+)- and (-)-phaseolinic acid by combination of enzymatic hydrolysis and chemical transformations with revision of the absolute configuration of the natural product. J Org Chem. 1998;63:2385–8. https://doi.org/10.1021/jo972032j

    Article  CAS  Google Scholar 

  51. Patel RM, Argade NP. General approach to 2,4-dialkyl-3-carboxybutyrolactones: An efficient synthesis of (±)-striatisporolide A and (±)-lichesterinic acid. Indian J Chem Sect B Org Med Chem. 2010;49:1071–5. https://doi.org/10.1002/chin.201050206

    Article  Google Scholar 

  52. Stewart M, Capon RJ, Lacey E, Tennant S, Gill JH. Calbistrin E and two other new metabolites from an Australian isolate of Penicillium striatisporum. J Nat Prod. 2005;68:581–4. https://doi.org/10.1021/np049614y

    Article  CAS  PubMed  Google Scholar 

  53. Zampieri D, Fortuna S, Calabretti A, Romano M, Menegazzi R, Schepmann D, et al. Synthesis, cytotoxicity evaluation, and computational insights of novel 1,4-diazepane-based sigma ligands. ACS Med Chem Lett. 2020;11:651–6. https://doi.org/10.1021/acsmedchemlett.9b00524

    Article  CAS  PubMed  Google Scholar 

  54. Zampieri D, Fortuna S, Calabretti A, Romano M, Menegazzi R, Schepmann D, et al. Discovery of new potent dual sigma receptor/GluN2b ligands with antioxidant property as neuroprotective agents. Eur J Med Chem. 2019;180:268–2. https://doi.org/10.1016/j.ejmech.2019.07.012

    Article  CAS  PubMed  Google Scholar 

  55. Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 2015;111:A3.B.1–3. https://doi.org/10.1002/0471142735.ima03bs111

    Article  Google Scholar 

  56. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3:1101–8. http://www.ncbi.nlm.nih.gov/pubmed/18546601 http://www.ncbi.nlm.nih.gov/pubmed/18546601

    Article  CAS  Google Scholar 

  57. Gao C, Wang Y, Wang C, Wang Z. Antioxidant and immunological activity in vitro of polysaccharides from Gomphidius rutilus mycelium. Carbohydr Polym. 2013;92:2187–92. https://doi.org/10.1016/j.carbpol.2012.12.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Università degli Studi di Trieste ‘Finanziamento di Ateneo per progetti di ricerca scientifica FRA 2016 e FRA 2020’ for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cateni.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cateni, F., Nitti, P., Drioli, S. et al. γ- and δ-lactones as fumarate esters analogues and their neuroprotective effects. Med Chem Res 30, 913–924 (2021). https://doi.org/10.1007/s00044-020-02698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02698-y

Keywords

Navigation