Skip to main content

Advertisement

Log in

Protective effects of three luteolin derivatives on aflatoxin B1-induced genotoxicity on human blood cells

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In the present study, we aimed to investigate the genotoxic and anti-genotoxic potencies of three luteolin derivatives (luteolin-7-O-glucoside, luteolin-7-O-rutinoside and luteolin-7-O-glucuronide) by using human cells. In the micronucleus test, the human lymphocytes were exposed to aflatoxin B1, the luteolin derivatives and a mixture of the two for 72 h. Furthermore, we have evaluated the levels of antioxidants of human whole blood plasma in order to clarify the possible mechanisms that may contribute to the anti-genotoxic activity of the luteolin derivatives. According to the results obtained from the micronucleus test, the highest protection rates for luteolin-7-O-glucoside, luteolin-7-O-rutinoside and luteolin-7-O-glucuronide against aflatoxin B1 were 32.09, 35.55 and 37.50 %, respectively. Similarly, these three luteolin derivatives ameliorated the level of antioxidants altered from aflatoxin B1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  • Anderson IB, Mullen WH, Meeker JE, Khojasteh-Bakht SC, Oishi S, Nelson SD, Blanc PD (1996) Pennyroyal toxicity: measurement of toxic metabolite levels in two cases and review of the literature. Ann Intern Med 124:726–734

    Article  CAS  PubMed  Google Scholar 

  • Amic D, Davidovic-Amic D, Beslo D, Rastija V, Lucic B, Trinajstic N (2007) SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 14:827–845

    Article  CAS  PubMed  Google Scholar 

  • Anar M, Aslan A, Alpsoy L, Kizil HE, Agar G (2016a) Antigenotoxic and the antioxidant capacity of total extract of two lichens. Fresenius Environ Bull 25:684–691

    CAS  Google Scholar 

  • Anar M, Orhan F, Alpsoy L, Gulluce M, Aslan A, Agar G (2016b) The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. Toxicol Ind Health 32:721–729

    Article  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonassi S, Znaor A, Ceppi M, Lando C, Chang WP, Holland N, Kirsch-Volders M, Zeiger E, Ban S, Barale R (2007) An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis 28:625–631

    Article  CAS  PubMed  Google Scholar 

  • Busby WF, Wogan GW (1984) Aflatoxins, 2nd edn. American Chemical Society, Washington, DC., 945

    Google Scholar 

  • Cakir A, Mavi A, Kazaz C, Yildirim A, Kufrevioglu OI (2006) Antioxidant activities of the extracts and components of Teucrium orientale L. var. orientale. Turk J Chem 30:483–494

    CAS  Google Scholar 

  • Cantero G, Campanella C, Mateos S, Cortes F (2006) Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. Mutagenesis 21:321–5

    Article  CAS  PubMed  Google Scholar 

  • Ceker S, Agar G, Nardemir G, Anar M, Kizil HE, Alpsoy L (2012) Investigation of anti-oxidative and anti-genotoxic effects of Origanum vulgare L. essential oil on human lymphocytes in vitro. J Essent Oil Bear Plants 15:997–1005

    Article  Google Scholar 

  • Choi KC, Chung WT, Kwon JK, Jang YS, Yu JY, Park SM, Lee JC (2010) Chemoprevention of a flavonoid fraction from Rhus verniciflua stokes on aflatoxin B1-induced hepatic damage in mice. J Appl Microbiol 31:150–156

    Google Scholar 

  • Corcuera LA, Arbillaga L, Vettorazzi A, Azqueta A, López de Cerain A (2011) Ochratoxin A reduces aflatoxin B1 induced DNA damage detected by the comet assay in Hep G2 cells. Food Chem Toxicol 49:2883–2889

    Article  CAS  PubMed  Google Scholar 

  • Danihelová M, Viskupičová J, Šturdík E (2012) Lipophilization of flavonoids for their food, therapeutic and cosmetic applications. Acta Chim Slov 5:59–69

    Google Scholar 

  • Gil ES, Couto RO (2013) Flavonoid electrochemistry: a review on the electroanalytical applications. Rev Bras Farmacogn 23:542–558

    Article  CAS  Google Scholar 

  • Guengerich FP, Johnsen W, Ueng Yamazaki H, Shimada T (1996) Involvement of cytochrome P450, glutathione S-transferase and epoxide hydrolase in the metabolism of aflatoxin B1 and relevance to risk of human liver cancer. Environ Health Persp 104:557–562

    CAS  Google Scholar 

  • Kim YS, Kim YH, Noh JR, Cho ES, Park JH (2011) Protective effect of Korean red ginseng against aflatoxin B(1)-induced hepatotoxicity in rat. J Ginseng Res 35:243–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy M, Križková L, Mučaji P, Kontšeková Z, Šeršeň S, Krajčovič J (2009) Antimutagenic activity and radical scavenging activity of water infusions and phenolics from Ligustrum plants leaves. Molecules 14:509–518

    Article  CAS  PubMed  Google Scholar 

  • Nissler L, Gebhardt R, Berger S (2004) Flavonoid binding to a multi-drug-resistance transporter protein: an STD-NMR study. Anal Bioanal Chem 379:1045–1049

    Article  CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Orhan F, Baris O, Yanmis D, Bal T, Guvenalp Z, Gulluce M (2012) Isolation of some luteolin derivatives from Mentha longifolia (L.) Hudson subsp. longifolia and determination of their genotoxic potencies. Food Chem 135:764–769

    Article  CAS  PubMed  Google Scholar 

  • Orhan F, Gulluce M, Ozkan H, Alpsoy L (2013) Determination of the antigenotoxic potencies of some luteolin derivatives by using a eukaryotic cell system, Saccharomyces cerevisiae. Food Chem 141:366–372

    Article  CAS  PubMed  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Ringl A, Prinz S, Huefner A, Kurzmann M, Kopp B (2007) Chemosystematic value of flavonoids from Crataegus x macrocarpa (Rosaceae) with special emphasis on(R)- and (S)-eriodictyol-7-O-glucuronide and luteolin-7-O-glucuronide. Chem Biodivers 4:154–162

    Article  CAS  PubMed  Google Scholar 

  • Salas MP, Celiz G, Geronazzo H, Daz M, Resnik SL (2011) Antifungal activity of natural and enzymatically-modified flavonoids isolated from citrus species. Food Chem 124:1411–1415

    Article  CAS  Google Scholar 

  • Sawhney DS, Vadehra DV, Baker RC (1973) The metabolism of 14C aflatoxins in laying hens. Poult Sci 52:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Sedmikova M, Reisnerora H, Dufkova Z, Burta I, Jilek F (2001) Potential hazard of simultaneous occurrence of aflatoxins B1 and ochratoxin A. Vet Med 46:169–174

    CAS  Google Scholar 

  • Seelinger G, Merfort I, Wölfle U, Schempp CM (2008) Anti-carcinogenic effects of the flavonoid luteolin. Molecules 13:2628–51

    Article  CAS  PubMed  Google Scholar 

  • Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–91

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem Lab Med 34:497–500

    CAS  Google Scholar 

  • Verma RJ (2004) Aflatoxin cause DNA damage. Int J Hum Genet 4:231–236

    CAS  Google Scholar 

  • Viskupičova J, Danihelova M, Ondrejovič M, Liptaj T, Šturdik E (2010) Lipophilic rutin derivatives for antioxidant protection of oil-based foods. Food Chem 123:45–50

    Article  Google Scholar 

  • Wang M, Simon JE, Aviles IF, He K, Zheng QY, Tadmor Y (2003) Analysis of actioxidative phenolic compounds in Artichoke (Cynara scolymus L.). J Agric Food Chem 51:601–608

    Article  CAS  PubMed  Google Scholar 

  • Wild CP, Gong YY (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Khlangwiset P (2010) Health economic impacts and cost-effectiveness of aflatoxin reduction strategies in Africa: case studies in biocontrol and postharvest interventions. Food Addit Contam 27:496–509

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by The Scientific and Technological Research Council of Turkey

(TUBITAK: 107T203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selçuk Çeker.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, F., Çeker, S., Anar, M. et al. Protective effects of three luteolin derivatives on aflatoxin B1-induced genotoxicity on human blood cells. Med Chem Res 25, 2567–2577 (2016). https://doi.org/10.1007/s00044-016-1681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1681-0

Keywords

Navigation