Skip to main content
Log in

Efficient synthesis of heterocyclic compounds derived from 2,6-dioxopiperazine derivatives and their evaluation for anti-inflammatory and anticancer activities

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Piperazine dione derivatives (1aj) on condensation with 2,6-pyridine dicarboxylic acid (2x), 3,5-pyridine dicarboxylic acid (2y) and 2,5-thiophene dicarboxylic acid (2z) gave corresponding heterocyclic compounds 3ax3jz in excellent yields. All the newly synthesized compounds were fully characterized by spectroscopic means and elemental analysis. On screening for anti-inflammatory and for in vitro anticancer activity, compounds 3bx, 3cx, 3dx, and 3ex exhibited good anti-inflammatory activity, whereas compounds 3ay, 3az, 3cz, 3dx, 3ez, 3fx, 3gx, and 3hz exhibited good anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Similar content being viewed by others

References

  • Abraham WR (2005) Controlling pathogenic Gram-negative bacteria by interfering with their biofilm formation. Drug Des Rev 2:13–33

    CAS  Google Scholar 

  • Arya S, Kumar N, Roy P, Sondhi SM (2013) Synthesis of amidine and bis amidine derivatives and their evaluation for anti-inflammatory and anticancer activity. Eur J Med Chem 59:7–14

    Article  CAS  PubMed  Google Scholar 

  • Boger DL, Fink BE, Hedrick MP (2000) A new class of highly cytotoxic diketopiperazines. Bioorg Med Chem Lett 10:1019–1020

    Article  CAS  PubMed  Google Scholar 

  • Brown JR, DuBois RN (2005) COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23:2840–2855

    Article  CAS  PubMed  Google Scholar 

  • Bryans J, Charlton P, Chicarelli-Robinson I, Collins M, Faint R, Latham C, Shaw I, Trew S (1996) Inhibition of plasminogen activator inhibitor-1 activity by two diketopiperazines, XR330 and XR334 produced by Streptomyces sp. J Antibiot 49:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Cody WL, Augelli-Szafran CE, Berryman KA, Cai C, Doherty AM, Edmunds JJ, He JX, Narasimhan LS, Penvose-Yi J, Plummer JS, Rapundalo ST, Rubin JR, Van Huis CA, Leblond L, Winocour PD, Siddiqui MA (1999) The design of potent and selective inhibitors of thrombin utilizing a piperazinedione template: part 2. Bioorg Med Chem Lett 9:2503–2508

    Article  CAS  PubMed  Google Scholar 

  • Folkes A, Roe MB, Sohal S, Golec J, Faint R, Brooks T, Charlton P (2001) Synthesis and in vitro evaluation of a series of diketopiperazine inhibitors of plasminogen activator inhibitor-1. Bioorg Med Chem Lett 11:2589–2592

    Article  CAS  PubMed  Google Scholar 

  • Grauslund M, Thougaard AV, Fuchtbauer A, Hofland KF, Hjorth PH, Jensen PB, Sehested M, Fuchtbauer EM, Jensen LH (2007) A mouse model for studying the interaction of bisdioxopiperazines with topoisomerase IIa in vivo. Mol Pharmacol 72:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Grosch S, Maier TJ, Schiffmann S, Geisslinger G (2006) Cyclooxygenase-2 (COX-2)—independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 98:736–747

    Article  PubMed  Google Scholar 

  • Harris RE (2009) Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 17:55–67

    Article  CAS  PubMed  Google Scholar 

  • Harris RE, Beebe-Donk J, Alshafie GA (2007) Cancer chemoprevention by cyclooxygenase 2 (COX-2) blockade: results of case control studies. Subcell Biochem 42:193–212

    Article  PubMed  Google Scholar 

  • Harris RE, Beebe-Donk J, Alshafie GA (2008) Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer 8:237–242

    Article  PubMed Central  PubMed  Google Scholar 

  • Hazra A, Paira P, Palit P, Banerjee S, Mondal NB, Sahu NP (2007) Synthesis of symmetrically 1,4-disubstituted piperazine-2,5-diones: a new class of antileishmanial agents. J Chem Res 2007:381–383

    Article  Google Scholar 

  • Houston DR, Synstad B, Eijsink VGH, Stark MJR, Eggleston IM, Aalten DMFV (2004) Structure-based exploration of cyclic dipeptide chitinase inhibitors. J Med Chem 47:5713–5720

    Article  CAS  PubMed  Google Scholar 

  • Jhaumeer-Laulloo S, Khodabocus A, Jugoo A, Jheengut D, Sobha S (2003) Synthesis of diketopiperazines containing prolinyl unitcyclo(l-prolinyl-l-leucine), cyclo(l-prolinyl-l-isoleucine) and cyclo(l-tryptophyl-l-proline). J Indian Chem Soc 80:765–768

    CAS  Google Scholar 

  • Kumar S, Kumar N, Roy P, Sondhi SM (2013) Efficient synthesis of piperazine-2,6-dione and 4-(1H-indole-2-carbonyl)piperazine-2,6-dione derivatives and their evaluation for anticancer activity. Med Chem Res 22:4600–4609

    Article  CAS  Google Scholar 

  • Loughlin WA, Marshall RL, Carreiro A, Elson KE (2000) Solutionphase combinatorial synthesis and evaluation of piperazine-2,5-dione derivatives. Bioorg Med Chem Lett 10:91–94

    Article  CAS  PubMed  Google Scholar 

  • Martins MB, Carvalho I (2007) Diketopiperazines: biological activity and synthesis. Tetrahedron 63:9923–9932

    Article  CAS  Google Scholar 

  • Molesworth PP, Gardiner MG, Jones RC, Smith JA, Tegg RS, Wilson C (2010) Synthesis and phytotoxicity of structural analogues of thaxtomin natural products. Aust J Chem 63:813–820

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Ong CW, Chang YA, Wu JY, Cheng CC (2003) Novel design of a pentacyclic scaffold as structural mimic of saframycin A. Tetrahedron 59:8245–8249

    Article  CAS  Google Scholar 

  • Pons JF, Fauchere JL, Lamaty F, Molla A, Lazaro R (1998) A constrained diketopiperazine as a new scaffold for the synthesis of peptidomimetics. Eur J Org Chem 5:853–859

    Article  Google Scholar 

  • Poster DS, Penta JS, Bruno S, MacDonald JS (1981) ICRF-187 in clinical oncology. Cancer Clin Trials 4:143–146

    CAS  PubMed  Google Scholar 

  • Shvedaite IP, Udrenaite EB, Lauzhikene NA, Gaidyalis PG (1999) Synthesis and anti-inflammatory activity of 4-acyl and 4-sulfonyl derivatives of piperazine-2,6-dione. Pharm Chem J 33:313–316

    Article  CAS  Google Scholar 

  • Silverstein RM, Webster FX (2002) Spectrometric identification of organic compounds, 6th edn. Wiley, New York, p 174

    Google Scholar 

  • Sinha S, Srivastava R, Clercq ED, Singh RK (2004) Synthesis and antiviral properties of arabino and ribonucleosides of 1,3-dideazaadenine, 4-nitro-1,3-dideazaadenine and diketopiperazine. Nucleos Nucleot Nucl 23:1815–1824

    Article  CAS  Google Scholar 

  • Sondhi SM, Rani R, Gupta PP, Agrawal SK, Saxena AK (2009) Synthesis, anticancer, and anti-inflammatory activity evaluation of methanesulfonamide and amidine derivatives of 3,4-diaryl-2-imino-4-thiazolines. Mol Divers 13:357–366

    Article  CAS  PubMed  Google Scholar 

  • Sondhi SM, Rani R, Singh J, Roy P, Agarwal SK, Saxena AK (2010a) Solvent free synthesis, anti-inflammatory and anticancer activity evaluation of tricyclic and tetracyclic benzimidazole derivatives. Bioorg Med Chem Lett 20:2306–2310

    Article  CAS  PubMed  Google Scholar 

  • Sondhi SM, Singh J, Rani R, Gupta PP, Agarwal SK, Saxena AK (2010b) Synthesis, anti-inflammatory and anticancer activity evaluation of some novel acridine derivatives. Eur J Med Chem 45:555–563

    Article  CAS  PubMed  Google Scholar 

  • Sondhi SM, Singh J, Agrawal SK, Saxena AK, Roy P (2012a) Synthesis of pyrimidine and condensed pyrimidine derivatives and their evaluation for anti-inflammatory activity. Med Chem Res 21:91–99

    Article  CAS  Google Scholar 

  • Sondhi SM, Kumar S, Kumar N, Roy P (2012b) Synthesis anti-inflammatory and anticancer activity evaluation of some pyrazole and oxadiazole derivatives. Med Chem Res 21:3043–3052

    Article  CAS  Google Scholar 

  • Toshiharu N, Shinichi Y, Toshihiko K, Muneaki T, Akira H, Makoto I, Shigeru T (1990) Antitumor activity of MST-16, a novel derivative of bis(2,6-dioxopiperazine), in murine tumor models. Cancer Chemother Pharmacol 26:193–197

    Article  Google Scholar 

  • Tuntiwachwuttikul P, Taechowisan T, Wanbanjob A, Thadaniti S, Taylor WC (2008) Lansai A-D, secondary metabolites from Streptomyces sp. SUC1. Tetrahedron 64:7583–7586

    Article  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW (1962) Carrageenin-induced edema in hind paw of rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 111:544–547

    Article  CAS  PubMed  Google Scholar 

  • Xiao D, Deguchi A, Gundersen GG, Oehlen B, Arnold L, Weinstein IB (2006) The sulindac derivatives OSI-461, OSIP486823, and OSIP487703 arrest colon cancer cells in mitosis by causing microtubule depolymerization. Mol Cancer Ther 5:60–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are thankful to technical staff of the Chemistry Department, I. I. T. Roorkee, for spectroscopic studies and elemental analysis. Thanks also due to Head I.I.C. for providing NMR facility. Mr. Sandeep Kumar is thankful to MHRD New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sham M. Sondhi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Kumar, N., Roy, P. et al. Efficient synthesis of heterocyclic compounds derived from 2,6-dioxopiperazine derivatives and their evaluation for anti-inflammatory and anticancer activities. Med Chem Res 23, 3953–3969 (2014). https://doi.org/10.1007/s00044-014-0969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0969-1

Keywords

Navigation