Skip to main content
Log in

An Optimal Multiplier Theorem for Grushin Operators in the Plane, II

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

A Publisher Correction to this article was published on 25 April 2022

This article has been updated

Abstract

In a previous work we proved a spectral multiplier theorem of Mihlin–Hörmander type for two-dimensional Grushin operators \(-\partial _x^2 - V(x) \partial _y^2\), where V is a doubling single-well potential, yielding the surprising result that the optimal smoothness requirement on the multiplier is independent of V. Here we refine this result, by replacing the \(L^\infty \)-Sobolev condition on the multiplier with a sharper \(L^2\)-Sobolev condition. As a consequence, we obtain the sharp range of \(L^1\)-boundedness for the associated Bochner–Riesz means. The key new ingredient of the proof is a precise pointwise estimate in the transition region for eigenfunctions of one-dimensional Schrödinger operators with doubling single-well potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Change history

References

  1. Berezin, F.A., Shubin, M.A.: The Schrödinger Equation, Mathematics and its Applications (Soviet Series), vol. 66. Kluwer Academic Publishers Group, Dordrecht (1991)

    Google Scholar 

  2. Chen, P., Sikora, A.: Sharp spectral multipliers for a new class of Grushin type operators. J. Fourier Anal. Appl. 19(6), 1274–1293 (2013)

    Article  MathSciNet  Google Scholar 

  3. Dall’Ara, G.M., Martini, A.: A robust approach to sharp multiplier theorems for Grushin operators. Trans. Am. Math. Soc. 373, 7533–7574 (2020)

    Article  MathSciNet  Google Scholar 

  4. Dall’Ara, G.M., Martini, A.: An optimal multiplier theorem for Grushin operators in the plane, I, preprint (2021). arXiv:2107.12015

  5. Duong, X.T., Ouhabaz, E.M., Sikora, A.: Plancherel-type estimates and sharp spectral multipliers. J. Funct. Anal. 196(2), 443–485 (2002)

    Article  MathSciNet  Google Scholar 

  6. Hebisch, W.: Functional calculus for slowly decaying kernels, preprint (1995), available at http://www.math.uni.wroc.pl/~hebisch/

  7. Kenig, C.E., Stanton, R.J., Tomas, P.A.: Divergence of eigenfunction expansions. J. Funct. Anal. 46(1), 28–44 (1982)

    Article  MathSciNet  Google Scholar 

  8. Krasikov, I.: On the Erdélyi-Magnus-Nevai conjecture for Jacobi polynomials. Constr. Approx. 28, 113–125 (2008)

    Article  MathSciNet  Google Scholar 

  9. Martini, A.: Joint functional calculi and a sharp multiplier theorem for the Kohn Laplacian on spheres. Math. Z. 286, 1539–1574 (2017)

    Article  MathSciNet  Google Scholar 

  10. Martini, A., Müller, D.: A sharp multiplier theorem for Grushin operators in arbitrary dimensions. Rev. Mat. Iberoam. 30(4), 1265–1280 (2014)

    Article  MathSciNet  Google Scholar 

  11. Martini, A., Müller, D., Nicolussi Golo, S.: Spectral multipliers and wave equation for sub-Laplacians: lower regularity bounds of Euclidean type. J. Eur. Math. Soc. (2022). https://doi.org/10.4171/JEMS/1191

    Article  Google Scholar 

  12. Martini, A., Sikora, A.: Weighted Plancherel estimates and sharp spectral multipliers for the Grushin operators. Math. Res. Lett. 19(5), 1075–1088 (2012)

    Article  MathSciNet  Google Scholar 

  13. Mitjagin, B.S.: Divergenz von Spektralentwicklungen in (\(L_{p}\))-Räumen. In: Linear Operators and Approximation, II (Proc. Conf. Oberwolfach Math. Res. Inst., Oberwolfach). Internat. Ser. Numer. Math., vol. 25, pp. 521–530. Birkhäuser, Basel (1974)

  14. Olver, F.W.J.: Asymptotics and Special Functions. Academic Press, New York (1974)

    MATH  Google Scholar 

  15. Robinson, D.W., Sikora, A.: Analysis of degenerate elliptic operators of Grušin type. Math. Z. 260(3), 475–508 (2008)

    Article  MathSciNet  Google Scholar 

  16. Szegő, G.: Orthogonal Polynomials, 4th edn. American Mathematical Society, Providence (1975)

    MATH  Google Scholar 

  17. Titchmarsh, E.C.: Eigenfunction Expansions Associated with Second-Order Differential Equations. Second Edition, Clarendon Press, Oxford, Part I (1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Maria Dall’Ara.

Additional information

Communicated by Krzysztof Stempak.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dall’Ara, G.M., Martini, A. An Optimal Multiplier Theorem for Grushin Operators in the Plane, II. J Fourier Anal Appl 28, 32 (2022). https://doi.org/10.1007/s00041-022-09931-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-022-09931-9

Keywords

Mathematics Subject Classification

Navigation