Skip to main content
Log in

Brain plasticity indicates key cognitive demands in an animal society: caste comparisons in dampwood termites

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Neuroecology theory predicts relative investment in brain regions will vary to match differences in behavior. Social insect castes provide exceptional opportunities to test for adaptive brain investment because castes differ in behavior and in cognitive demands. Caste development in dampwood termites (genus Zootermopsis) is complex, providing multiple caste comparisons for testing neuroecological predictions: Zootermopsis termites can remain in a worker-like sterile nymphal caste, develop into sterile defensive soldiers, or follow three distinct pathways to reproductive status (wingless neotenic reproductives, reproductive soldiers, and winged primary reproductives [Queens/Kings]). We measured differences in the relative sizes of key brain neuropils among Zootermopsis termite castes to test which caste-specific behavioral and cognitive demands (reproduction versus worker behavior) best predicted patterns of brain investment. We focused on the Antennal Lobes (centers of chemosensory processing) and the Mushroom Bodies (centers of learning, memory, and sensory integration). There was no evidence that reproductive status was associated with increased investment in either the Antennal Lobes or the Mushroom Bodies. Instead, several caste comparisons supported the hypothesis that labor/task performance was a positive predictor of brain region investment: nymphs (workers) had the greatest relative investment in both Antennal Lobes and Mushroom Bodies, compared to developmentally preceding stages (immature instars I–III) and later castes (soldiers and reproductives). These findings suggest that task performance demands were the main drivers of caste-specific adaptive brain investment in Zootermopsis, and that reproductive status entailed relatively few cognitive challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ayoub JG (2018) Neuromodulation of mushroom body output neurons in Drosophila regulates hunger and satiety. Ph.D. dissertation, University of California, San Diego

  • Barrett M, Schneider S, Sachdeva P, Gomez A, Buchmann S, O’Donnell S (2021) Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J Comp Phys A 207:497–504

    Article  Google Scholar 

  • Bouchebti S, Arganda S (2020) Insect lifestyle and evolution of brain morphology. Curr Opin Ins Sci 42:90–96

    Article  Google Scholar 

  • Brent CS (2001) Reproductive maturation in primary and secondary reproductives of the dampwood termite Zootermopsis angusticollis Hagen: the role of social signals and nutrition. PhD dissertation. Boston University

  • Caponera V, Avilés L, Barrett M, O’Donnell S (2021) Behavioral attributes of social groups determine the strength and direction of selection on neural investment. Front Ecol Evol 9:733228

    Article  Google Scholar 

  • Castle GB (1934) The life history of the common damp-wood termite Zootermopsis angusticollis. Doctoral dissertation, University of California

  • Catania KC (2000) Cortical organization in insectivora: the parallel evolution of the sensory periphery and the brain. Brain Behav Evol 55:311–321

    Article  CAS  PubMed  Google Scholar 

  • Cnotka J, Möhle M, Rehkämper G (2008) Navigational experience affects hippocampus size in homing pigeons. Brain Behav Evol 72:233–238

    Article  PubMed  Google Scholar 

  • Ehmer B, Reeve HK, Hoy RR (2001) Comparison of brain volumes between single and multiple foundresses in the paper wasp Polistes dominulus. Brain Behav Evol 57:161–168

    Article  CAS  PubMed  Google Scholar 

  • el Jundi B, Heinze S (2020) Three-dimensional atlases of insect brains. In: Pelc R, Walz W, Doucette JR (eds) Neurohistology and imaging techniques. Neuromethods 153:1–52. https://doi.org/10.1007/978-1-0716-0428-1_3

  • Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Ann Rev Entomol 51:209–232

    Article  CAS  Google Scholar 

  • Fahrbach SE, Moore D, Capaldi EA, Farris SM, Robinson GE (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. Learn Mem 5:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farris SM, Strausfeld NJ (2003) A unique mushroom body substructure common to basal cockroaches and to termites. J Comp Neurol 456:305–320

    Article  PubMed  Google Scholar 

  • Farris SM, Robinson GE, Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. J Neurosci 21:6395–6404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenberg SLW, Stuart AM (1982) Precocious reproductive development (Neoteny) by larvae of a primitive termite Zootermopsis angusticollis (Hagen). Ins Soc 29:535–547

    Article  Google Scholar 

  • Groh C, Rössler W (2008) Caste-specific postembryonic development of primary and secondary olfactory centers in the female honeybee brain. Arth Struct Devel 37:459–468

    Article  Google Scholar 

  • Gronenberg W, Liebig J (1999) Smaller brains and optic lobes in reproductive workers of the ant Harpegnathos. Naturwissenschaften 86:343–345

    Article  CAS  Google Scholar 

  • Holmes MM, Rosen GJ, Jordan CL, de Vries GJ, Goldman BD, Forger NG (2007) Social control of brain morphology in a eusocial mammal. Proc Nat Acad Sci 104:10548–10552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howse PE (1968) On the division of labour in the primitive termite Zootermopsis nevadensis (Hagen). Ins Soc 15:45–50

    Article  Google Scholar 

  • Ilies I, Muscedere ML, Traniello JF (2015) Neuroanatomical and morphological trait clusters in the ant genus Pheidole, evidence for modularity and integration in brain structure. Brain Behav Evol 85:63–76

    Article  PubMed  Google Scholar 

  • Jaggard JB, Lloyd E, Yuiska A, Patch A, Fily Y, Kowalko JE, Appelbaum L, Duboue ER, Keene AC (2020) Cavefish brain atlases reveal functional and anatomical convergence across independently evolved populations. Sci Adv 6:p.eaba3126

  • Jones TA, Donlan NA, O’Donnell S (2009) Growth and pruning of mushroom body Kenyon cell dendrites during worker behavioral development in the paper wasp, Polybia aequatorialis (Hymenoptera: Vespidae). Neurobiol Learn Mem 92:485–495

    Article  PubMed  Google Scholar 

  • Jones BM, Leonard AS, Papaj DR, Gronenberg W (2013) Plasticity of the worker bumblebee brain in relation to age and rearing environment. Brain Behav Evol 82:250–261

    Article  PubMed  Google Scholar 

  • Korb J (2018) Chemical fertility signaling in termites: idiosyncrasies and commonalities in comparison with ants. J Chem Ecol 44:818–826

    Article  CAS  PubMed  Google Scholar 

  • Korb J, Hartfelder K (2008) Life history and development-a framework for understanding developmental plasticity in lower termites. Biol Rev 83:295–313

    Article  PubMed  Google Scholar 

  • Kotrschal A, Rogell B, Maklakov AA, Kolm N (2012) Sex-specific plasticity in brain morphology depends on social environment of the guppy, Poecilia reticulata. Behav Ecol Sociobiol 66:1485–1492

    Article  Google Scholar 

  • Kubler LS, Kelber C, Kleineidam CJ (2010) Distinct antennal lobe phenotypes in the leaf-cutting ant (Atta vollenweideri). J Comp Neurol 518:352–365

    Article  Google Scholar 

  • Li Y, Strausfeld NJ (1999) Multimodal efferent and recurrent neurons in the medial lobes of cockroach mushroom bodies. J Comp Neurol 409:647–663

    Article  CAS  PubMed  Google Scholar 

  • Liebig J, Eliyahu D, Brent CS (2009) Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav Ecol Sociobiol 63:1799–1807

    Article  Google Scholar 

  • Masuoka Y, Nuibe K, Hayase N, Oka T, Maekawa K (2021) Reproductive soldier development is controlled by direct physical interactions with reproductive and soldier termites. Insects 12:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Natl Acad Sci 107:12963–12968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myles TG (1986) Reproductive soldiers in the Termopsidae (Isoptera). Pan Pac Entomol 62:293–299

    Google Scholar 

  • Nagel M, Qiu B, Brandenborg LE, Larsen RS, Ning D, Boomsma JJ, Zhang G (2020) The gene expression network regulating queen brain remodeling after insemination and its parallel use in ants with reproductive workers. Sci Adv 6:p.eaaz5772

  • Nalepa CA (2010) Altricial development in subsocial cockroach ancestors: foundation for the evolution of phenotypic plasticity in termites. Evol Dev 12:95–105

    Article  PubMed  Google Scholar 

  • O’Donnell S, Bulova SJ (2017) Development and evolution of brain allometry in wasps (Vespidae): Size, ecology and sociality. Curr Opin Ins Sci 22:54–61

    Article  Google Scholar 

  • O’Donnell S, Donlan N, Jones T (2007) Developmental and dominance-associated differences in mushroom body structure in the paper wasp Mischocyttarus mastigophorus. Dev Neurobiol 67:39–46

    PubMed  Google Scholar 

  • O’Donnell S, Clifford MR, Deleon S, Papa C, Zahedi N, Bulova SJ (2014) A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav Ecol Sociobiol 68:529–536

    Article  Google Scholar 

  • O’Donnell S, Bulova SJ, DeLeon S, Barrett M, Fiocca K (2017) Caste-differences in the mushroom bodies of swarm-founding paperwasps: implications for brain plasticity and brain evolution (Vespidae, Epiponini). Behav Ecol Sociobiol 71:116

    Article  Google Scholar 

  • O’Donnell S, Bulova S, Barrett M (2021) Experience-expectant brain plasticity corresponds to caste-specific abiotic challenges in dampwood termites (Zootermopsis angusticollis and Z. nevadensis). Sci Nat 108:57

  • Pascual A, Préat T (2001) Localization of long-term memory within the Drosophila mushroom body. Science 294:1115–1117

    Article  CAS  PubMed  Google Scholar 

  • Penick CA, Trobaugh B, Brent CS, Liebig J (2013) Head-butting as an early indicator of reproductive disinhibition in the termite Zootermopsis nevadensis. J Insect Behav 26:23–34

    Article  Google Scholar 

  • Penick CA, Ghaninia M, Haight KL, Opachaloemphan C, Yan H, Reinberg D, Liebig J (2021) Reversible plasticity in brain size, behaviour and physiology characterizes caste transitions in a socially flexible ant (Harpegnathos saltator). Proc R Soc B 288:20210141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehan SM, Bulova SJ, O’Donnell S (2015) Cumulative effects of foraging behavior and social dominance on brain development in a facultatively social bee (Ceratina australensis). Brain Behav Evol 85:117–124

    Article  PubMed  Google Scholar 

  • Riveros AJ, Gronenberg W (2010) Brain allometry and neural plasticity in the bumblebee Bombus occidentalis. Brain Behav Evol 75:138–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Roat TC, da Cruz LC (2010) Differences in mushroom bodies morphogenesis in workers, queens and drones of Apis mellifera: Neuroblasts proliferation and death. Micron 41:382–389

    Article  PubMed  Google Scholar 

  • Rosengaus RB, Traniello JF (1991) Biparental care in incipient colonies of the dampwood termite Zootermopsis angusticollis Hagen (Isoptera: Termopsidae). J Ins Behav 4:633–647

    Article  Google Scholar 

  • Rosengaus RB, Traniello JF (1993) Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: a single multiage caste. J Ins Behav 6:237–252

    Article  Google Scholar 

  • Sallet J, Mars RB, Noonan MP, Andersson JL, O’Reilly JX, Jbabdi S, Croxson PL, Jenkinson M, Miller KL, Rushworth MF (2011) Social network size affects neural circuits in macaques. Science 334:697–700

    Article  CAS  PubMed  Google Scholar 

  • Smith AR, Seid MA, Jiménez LC, Wcislo WT (2010) Socially induced brain development in a facultatively eusocial sweat bee Megalopta genalis (Halictidae). Proc R Soc B 277:2157–2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Stopfer M (2014) Central processing in the mushroom bodies. Curr Opin Ins Sci 6:99–103

    Article  Google Scholar 

  • Strausfeld NJ, Hansen L, Li Y, Gomez RS, Ito K (1998) Evolution, discovery, and interpretations of arthropod mushroom bodies. Learn Mem 5:11–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci 100:12808–12813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vezoli J, Vinck M, Bosman CA, Bastos AM, Lewis CM, Kennedy H, Fries P (2021) Brain rhythms define distinct interaction networks with differential dependence on anatomy. Neuron 109:3862–3878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe N, Yamamoto M (2015) Neural mechanisms of social dominance. Front Neurosci 9:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Weesner FM (1969) External anatomy. In: Krishna K, Weesner FM (eds) Biology of termites. Academic Press, New York, pp 19–45

  • Wilczynski W (1984) Central neural systems subserving a homoplasous periphery. Am Zool 24:755–763

    Article  Google Scholar 

  • Yagi R, Mabuchi Y, Mizunami M, Tanaka NK (2016) Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster. Sci Rep 6:1–8

    Article  Google Scholar 

  • Zube C, Rössler W (2008) Caste-and sex-specific adaptations within the olfactory pathway in the brain of the ant Camponotus floridanus. Arth Struct Devel 37:469–479

    Article  Google Scholar 

Download references

Acknowledgements

S. O’D. was funded by NSF Grants IBN 0347315 and IOS 1209072. Thanks to James Traniello and Rebecca Rosengaus for helpful comments and advice on working with Zootermopsis termites. Barbara Thorne and Nancy Breisch generously provided Z. nevadensis subject termites and made extensive insightful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O’Donnell.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Donnell, S., Bulova, S.J. & Barrett, M. Brain plasticity indicates key cognitive demands in an animal society: caste comparisons in dampwood termites. Insect. Soc. 69, 307–314 (2022). https://doi.org/10.1007/s00040-022-00873-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-022-00873-5

Keywords

Navigation