Skip to main content
Log in

Somatic anomalies in Formicidae: new cases and discussion of anomaly origin during immature development

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Originally viewed as monstrosities or scientific curiosities, developmental anomalies have been widely reported in arthropods since the nineteenth century. However, it was only after Wheeler’s studies on ants and Balazuc’s investigations on numerous other arthropods that anomalous individuals began to be systematically analyzed. Denominations for these individuals have varied greatly, generating a confusing or often contradictory nomenclature. In Hymenoptera, sexual dimorphism arises from a haplodiploid sex-determination system. During embryonic and post-embryonic development, defects can result in the formation of abnormal individuals carrying morphological or genetic aberrations that can be classified according to criteria based on body location. Gynandromorphs or sex mosaics are individuals that simultaneously display male and female characters, either bilaterally or in mosaics. Other somatic abnormalities may be a consequence of defects and injuries that occurred during embryonic or post-embryonic development. Using literature data on 85 species of ants distributed in 8 subfamilies and detailed descriptions of a series of collection individuals, we reviewed the current definitions of somatic developmental anomalies and proposed a simplified classification based on currently available nomenclature. In addition to presenting a causality discussion, we arranged the cases of gynandromorphs, mosaics, and teratological forms in a sequence and hypothesized about the temporal origin of alterations. The large majority of cases reported in the literature are of gynandromorphism, followed by teratology. Analysis of such phenomena raises behavioral, genetic, and ecological questions related to the viability of anomalous individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data are available in the text and in the appendix.

References

  • Aamidor SE, Yagound B, Ronai O, Oldroyd BP (2018) Sex mosaics in the honeybee: how haplodiploidy makes possible the evolution of novel forms of reproduction in social Hymenoptera. Biol Lett 14(1–6):20180670. https://doi.org/10.1098/rsbl.2018.0670

    Article  PubMed  PubMed Central  Google Scholar 

  • Abouheif E (2021) Ant caste evo-devo: it’s not all about size. Trends Ecol Evol 36(8):668–670. https://doi.org/10.1016/j.tree.2021.04.002

    Article  PubMed  Google Scholar 

  • AntWeb (2020) Version 8.42. California Academy of Science https://www.antweb.org. Accessed 29 Oct 2020

  • Balazuc J (1958) La tératologie des hyménoptéroïdes. Ann Soc Entomol Fr 127:167–203

    Google Scholar 

  • Berndt K-P, Kremer G (1982) Heat shock-induced gynandromorphism in the pharaoh’s ant, Monomorium pharaonis (L.). Experientia 38:798–799

    Article  Google Scholar 

  • Berndt K-P, Kremer G (1983) New categories in the gynandromorphism of ants. Insectes Soc 30(4):461–465

    Article  Google Scholar 

  • Bolton B (1979) The ant tribe Tetramoriini (Hymenoptera: Formicidae). The genus Tetramorium Mayr in the Malagasy region and in the New World. Bulletin of the British Museum (Natural History). Entomology 38:129–181

    Google Scholar 

  • Bolton B (2000) The ant tribe Dacetini. Mem Am Entomol Inst 65:1–1028

    Google Scholar 

  • Bolton B (2021) An online catalog of the ants of the World. http://www.antcat.org. Accessed 15 June 2021

  • Brockmann A, Brückner D (1999) Dimorphic antennal systems in gynandromorphic honey bees, Apis mellifera l. (Hymenoptera: Apidae). Int J Insect Morphol 28:53–60

    Article  Google Scholar 

  • Buschinger A, Stoewesand H (1971) Teratologisehe Untersuchungen an Ameisen. Beitr Ent 1–2:211–241

    Google Scholar 

  • Campos AEC, Kato LM, Zarzuela MFM (2011) Occurrence of different gynandromorphs and ergatandromorphs in laboratory colonies of the urban ant, Monomorium floricola. J Insect Sc 11:1–10

    Google Scholar 

  • Champman RF (1998) The insects. Structure and function. Cambridge University Press, Cambridge, p 770

    Book  Google Scholar 

  • Creighton WS (1928) Notes on three abnormal ants. Psyche 35:51–55

    Article  Google Scholar 

  • Crozier RH (1975) In: John B (ed) Animal cytogenetics. Insecta: 7 Hymenoptera. Gebruder. Borntraeger Berlin. Stuttgart

  • Csőrz S, Majoros G (2008) Ontogenetic origin of mermithogenic Myrmica phenotypes (Hymenoptera, Formicidae). Insect Soc 56:70–76. https://doi.org/10.1007/s00040-008-1040-3

    Article  Google Scholar 

  • Dalla Torre KW, Friese H (1899) Die ermaphroditen und gynandromorphen hymenopteren. Ber Naturwis-Mediz Ver Innsbruck 24:1–96

    Google Scholar 

  • Delabie J, Masson C, Febvay G (1986) Neurobiological bases of chemical communication in the fungus-growing ant, Acromyrmex octospinosus. In: Lofgren CS, Vander Meer RK (eds) Fire ants and leaf-cutting ants—biology and management. Westview Press, Boulder, pp 302–315

    Google Scholar 

  • Delabie JHC, Santos-Neto E, Oliveira ML, Silva PS, Santos RJ, Caitano B, Mariano CSF, Arnhold A, Koch EBA (2020) A coleção de Formicidae do Centro de Pesquisas do Cacau (CPDC) Ilhéus, Bahia, Brasil. Bol Mus Par Emílio Goeldi, Ciênc Nat 15(1):289–305

    Article  Google Scholar 

  • Donisthorpe H (1929) Gynandromorphism in ants. Zool Anz 82:92–96

    Google Scholar 

  • Donisthorpe H (1947) Some gynandromorphy ants and a possible pterergate from Ireland. Entomol 277–279

  • Engels MS (2007) A lateral gynandromorph in the bee genus Thyreus and the sting mechanism in the Melectini (Hymenoptera: Apidae). Am Mus Novit 3553:1–11

    Article  Google Scholar 

  • Forel A (1874) Les fourmis de la Suisse. Systématique, notices anatomiques et physiologiques, architecture, distribution géographique, nouvelles expériences et observations de moeurs. Neue Denkschr. Allg Schweiz Ges Gesammten Naturwiss 26:1–452

    Google Scholar 

  • Fowler HG, Forti LC, Brandão CRF, Delabie JHC, Vasconcelos HL (1991) Ecologia nutricional de formigas. In: Panizzi AR, Parra JRP (eds) Ecologia nutricional de insetos e suas implicações no manejo de pragas. Manole e CNPq, São Paulo, pp 131–223

    Google Scholar 

  • Francoeur A (1981) Un mâle sans yeux composés de Formica subsericea (Formicidae, Hymenoptera). Nat Can 108:107–110

    Google Scholar 

  • General DEM, Buenavente PAC (2021) The real deal: the ant species, Pheidole sauberi (Hymenoptera: Formicidae), first description of the queen and first record of a mermithergate in the Philippines. Philipp J Syst Biol 15:1–8. https://doi.org/10.26757/pjsb2021a1500x

    Article  Google Scholar 

  • Gjershaug JO, Ødegaard F, Staverløkk A, Olsen KM (2016) Records of bilateral gynandromorphism in three species of ants (Hymenoptera, Formicidae) in Norway. Norw J Entomol 63:65–70

    Google Scholar 

  • Gullan PJ, Cranston PS (2007) Os insetos: um resumo de entomologia. São Paulo, Roca, p 456

    Google Scholar 

  • Hafiqi AM, Rajakumar A, Abouheif E (2020) Origin and elaboration of a major evolutionary transition in individuality. Nature 585(7824):239–244. https://doi.org/10.1038/s41586-020-2653-6

    Article  CAS  Google Scholar 

  • Heinze J, Trenkle S (1997) Male polymorphism and gynandromorphs in the ant Cardiocondyla emeryi. Naturwissenschaften 84:129–131

    Article  CAS  Google Scholar 

  • Heinze J (1998) Intercastes, intermorphs, and ergatoid queens: who is who in ant reproduction? Insect Soc 45:113–124

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, p 732

    Book  Google Scholar 

  • Jahner JP, Lucas LK, Wilson JS, Forister ML (2015) Morphological outcomes of gynandromorphism in Lycaeides butterflies (Lepidoptera: Lycaenidae). J Insect Sci 15(38):1–8. https://doi.org/10.1093/jisesa/iev020

    Article  CAS  Google Scholar 

  • Kinomura K, Yamauchi K (1994) Frequent occurrence of gynandromorphs in the natural population of the ant Vollenhovia emeryi (Hymenoptera: Formicidae). Insect Soc 41:273–278

    Article  Google Scholar 

  • Krichilsky E, Vega-Hidalgo A, Hunter K, Kingwell C, Ritner C, Wcislo W, Smith A (2020) The first gynandromorph of the Neotropical bee Megalopta amoena (Spinola, 1853) (Halictidae) with notes on its circadian rhythm. J Hymenopt Res 75:97–108. https://doi.org/10.3897/jhr.75.47828

    Article  Google Scholar 

  • Krumm JR (2013) Axial gynandromorphy and sex determination in Branchinecta lindahli (Branchiopoda: Anostraca). J Crustacean Biol 33(3):303–308. https://doi.org/10.1163/1937240X-00002146

    Article  Google Scholar 

  • Kugler C, Brown WL Jr (1982) Revisionary and other studies on the ant genus Ectatomma, including the descriptions of two new species. Search Agric 24:1–8

    Google Scholar 

  • Laciny A (2021) Among the shapeshifters: parasite-induced morphologies in ants (Hymenoptera, Formicidae) and their relevance within the EcoEvoDevo framework. EvoDevo 12:2. https://doi.org/10.1186/s13227-021-00173-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenhart PA, Dash ST, Mackay WP (2013) A revision of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae). J Hymenopt Res 31:119–164. https://doi.org/10.3897/JHR.31.4335

    Article  Google Scholar 

  • Lucena RU, Araújo JP, Christoffersen ML (2015) A new species of Anoplodactylus (Pycnogonida: Phoxichilidiidae) from Brazil, with a case of gynandromorphism in Anoplodactylus eroticus Stock, 1968. Zootaxa 4000(4):428–444. https://doi.org/10.11646/zootaxa.4000.4.2

    Article  PubMed  Google Scholar 

  • Lucia M, Abrahamovich AH, Alvarez LJ (2009) A gynandromorph of Xylocopa nigrocincta Smith (Hymenoptera: Apidae). Neotrop Entomol 38(1):155–157

    Article  Google Scholar 

  • MacKay WP (1993) A review of the New World ants of the genus Dolichoderus (Hymenoptera: Formicidae). Sociobiology 22:1–148

    Google Scholar 

  • Mariano CSF, Rios EO, Araujo EA, Delabie JHC (2017) From back-to-back bilaterality and viability of sexual mosaics in Myrmicinae (Formicidae). In: XXIII Simpósio de Mirmecologia, an International Ant Meeting. Curitiba, UFPR

  • Martini A, Baldassari N, Baronio P (1999) Gynandromorphism and its manifestations in Diprionid (Hymenoptera). Boll Ist Ent G Grandi Univ Bologna 53:87–107

    Google Scholar 

  • Matsuo K, Kubo R, Sasaki T, Ono M, Ugajin A (2018) Scientific note on interrupted sexual behavior to virgin queens and expression of male courtship-related gene fruitless in a gynandromorph of bumblebee, Bombus ignitusi. Apidologie 49:411–414. https://doi.org/10.1007/s13592-018-0568-0

    Article  CAS  Google Scholar 

  • Molet M, Wheeler DE, Peeters C (2012) Evolution of novel mosaic castes in ants: modularity, phenotypic plasticity, and colonial buffering. Am Nat 180(3):328–341. https://doi.org/10.1086/667368

    Article  PubMed  Google Scholar 

  • Morgan TH (1905) An alternative interpretation of the origin of gynandromorphous insects. Science 21(538):632–634

    Article  CAS  PubMed  Google Scholar 

  • Munsee JR (1977) A gynandromorphy of Smithistruma (Hymenoptera: Formicidae). Proc Indiana Ac Sci 125(3):252–254

    Google Scholar 

  • Narita S, Pereira RAS, Kjellberg F, Kageyama D (2010) Gynandromorphs and intersexes: potential to understand the mechanism of sex determination in arthropods. Terr Arthropod Rev 3:63–96. https://doi.org/10.1163/187498310X496190

    Article  Google Scholar 

  • Palmer RA (2009) Animal asimetry. Curr Biol 19(12):R473-477

    Article  CAS  PubMed  Google Scholar 

  • Peeters C (2019) Castas. Homología y analogía en la forma y función. In: Fernandéz F, Guerrero RJ, Delsine T. Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá, pp 159–164

  • Pereira RAS, Prado AP, Kjellberg F (2003) Gynandromorphism in pollinating fig wasps (Hymenoptera: Agaonidae). Entomol News 114(3):153–154

    Google Scholar 

  • Peru L (1984) Individus tératologiques chez les fourmis Leptothorax. Act Col Ins Soc 1:141–149

    Google Scholar 

  • Raccaud-Schoeller J (1980) Les Insectes. Physiologie, Développement. Masson, Paris, p 296

  • Radchenko AG, Elmes GW (2010) Myrmica ants (Hymenoptera: Formicidae) of the Old World. Warszawska Drukarnia Naukowa, Warszawa, p 791

    Google Scholar 

  • Rogers K (2018) "chimera" Encyclopedia Britannica, 3 Dec. 2018, https://www.britannica.com/science/chimera-genetics. Accessed 22 Nov 2021

  • Scivittaro A, Bernardi M (1990) Sobre uma anomalia encontrada em Acromyrmex (Moellerius) balzani (Emery, 1890) (Hymenoptera, Formicidae). An Soc Entomol Bras 19(1):243–245

    Article  Google Scholar 

  • Séguy E (1967) Dictionnaire des Termes Techniques d’Entomologie Élémentaire. Lechevalier, Paris, p 465

    Google Scholar 

  • Seifert B, Bagherian Yazdi AB, Schultz R (2014) Myrmica martini sp.n.—a cryptic species of the Myrmica scabrinodis species complex (Hymenoptera: Formicidae) revealed by geometric morphometrics and nest centroid clustering. Myrmecol News 19:171–183

    Google Scholar 

  • Silva TSR, Feitosa RM (2019) On titles and royalty: a terminological discussion over castes in myrmecology. Insect Soc 66:25–35. https://doi.org/10.1007/s00040-018-0672-1

    Article  Google Scholar 

  • Torossian C (1974) Biologie et éthologie d’un ergatandromorphe de Dolichoderus quadripunctatus (L.) (Hym. Formicoidea Dolichoderidae). Insect Soc 21(2):145–150

    Article  Google Scholar 

  • Trible W, Kronauer DJC (2017) Caste development and evolution in ants: it’s all about size. J Exp Biol 220:53–62. https://doi.org/10.1242/jeb.145292

    Article  PubMed  Google Scholar 

  • Turrisi GF, Borsato W (2008) Description of two gynandromorphic Eumenidae (Hymenoptera Vespoidea). Linzer biol Beitr 40(1):951–957

    Google Scholar 

  • Turrisi GF, Foucart A (2008) Description of a gynandromorphic Myrmilla calva (VILLIERS 1789), with a summary on gynandromorphism phenomenon within Mutillidae (Hymenoptera: Scolioidea). Linzer biol Beitr 40(2):1873–1880

    Google Scholar 

  • Tussac H, Balazuc J (1991) Anomalies de l’appareil visuel chez des Hyménoptères Apocrites. L’Entomologiste 47(1):49–52

    Google Scholar 

  • Weber NA (1957) The nest of an anomalous colony of the arboreal ant Cephalotes atratus. Psyche 64:60–69

    Article  Google Scholar 

  • Werner E (2012) A Developmental network theory of gynandromorphs, sexual dimorphism and species formation. arXiv.org 1:1–22

  • Wheeler WM (1903) Some new gynandromorphous ants, with a review of the previously recorded cases. Bull Am Mus Nat Hist 19:653–683

    Google Scholar 

  • Wheeler WM (1905) Worker ants with vestiges of wings. Bull Am Mus Nat Hist 21:405–408

    Google Scholar 

  • Wheeler WM (1910) Ants: their structure, development and behavior. Columbia University Press, New York

    Google Scholar 

  • Wheeler WM (1914) Gynandromorphous ants described during the decade 1903–1913. Harvard University, Bussey Institution

    Book  Google Scholar 

  • Wheeler WM (1928) Mermis parasitism and intercastes among ants. J Exp Zool 50(2):165–237

    Article  Google Scholar 

  • Wheeler WM (1931) Concerning some ant gynandromorphs. Psyche 38:80–85

    Article  Google Scholar 

  • Wheeler WM (1937) Mosaics and other anomalies among ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Wigglesworth VB (1974) Principles of insect physiology. Chapman & Hall, Ltd., London, p 896

    Book  Google Scholar 

  • Wilson EO (1953) The origin and evolution of polymorphism in ants. Q Rev Biolo 28(2):136–156. https://doi.org/10.1086/399512

    Article  CAS  Google Scholar 

  • Wilson EO (1971) The insect societies. Belknap Press of Harvard University Press, Cambridge, p 548

    Google Scholar 

  • Wilson EO (2003) Pheidole in the New World: a dominant, Hyperdiverse Ant Genus. Harvard University Press, Cambridge, p 794

    Google Scholar 

  • Yang AS, Abouheif E (2011) Gynandromorphs as indicators of modularity and evolvability in ants. J Exp Zool Part B 316:313–318. https://doi.org/10.1002/jez.b.21407

    Article  Google Scholar 

  • Yoshizawa J, Mimori K, Yamauchi K, Tsuchida K (2009) Sex mosaics in a male dimorphic ant Cardiocondyla kagutsuchi. Naturwissenschaften 96:49–55. https://doi.org/10.1007/s00114-008-0447-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Brazilian Council of Research and Scientific Development (CNPq Research Grant for CSFM PQ-307859/2018-5 and JHCD PQ-304629/2018-9). ESA acknowledges the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for her Grant (process). Thanks are due to Danusa Oliveira Campos for drawing the map and to four anonymous reviewers and to Terry McGlynn for valuable and numerous comments which greatly benefited the quality of the study.

Author information

Authors and Affiliations

Authors

Contributions

CSFM and JHCD contributed to study conception and design. Material preparation, data collection and analysis were performed by CSFM and ESA. The first draft of the manuscript was written by CSFM and JHCD, and all the authors commented on previous versions of the manuscript. All the authors are accountable for the content and approved the final version of manuscript.

Corresponding author

Correspondence to C. S. F. Mariano.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 69 KB)

Supplementary file2 (JPG 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariano, C.S.F., Araújo, E.S. & Delabie, J.H.C. Somatic anomalies in Formicidae: new cases and discussion of anomaly origin during immature development. Insect. Soc. 69, 197–213 (2022). https://doi.org/10.1007/s00040-022-00863-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-022-00863-7

Keywords

Navigation