Skip to main content
Log in

Mating system, population genetics, and phylogeography of the devil’s garden ant, Myrmelachista schumanni, in the Peruvian Amazon

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Devil’s gardens are a remarkable feature of Amazonian rainforests. These clearings result from the cultivation of ant-plants by their symbiotic ant, Myrmelachista schumanni. Each devil’s garden is inhabited by a single M. schumanni colony, often with millions of workers and thousands of queens. Through a combination of field surveys and microsatellite genotyping, we examined M. schumanni colony structure, mating system, dispersal, and phylogeography. We discovered that the reproduction of M. schumanni is weakly seasonal, exhibits facultative polyandry, and involves split sex ratios potentially leading to sex-biased dispersal. Surprisingly, we observed only very weak clustering of genetic variation, either within or between devil’s gardens. We hypothesize that the apparent absence of geographical structure results from the unusually high level of genetic differentiation between colonies. This study adds intriguing observations to the scarce literature about the reproduction and phylogeography of Amazonian ants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahrens ME, Ross KG, Shoemaker DD (2005) Phylogeographic structure of the fire ant Solenopsis invicta in its native South American range: roles of natural barriers and habitat connectivity. Evolution 59:1733–1743

    Article  CAS  PubMed  Google Scholar 

  • Bellard F (2005) QEMU, a fast and portable dynamic translator. In: USENIX annual technical conference, FREENIX Track, 2005, p 46

  • Bradbury IR, Hamilton LC, Dempson B, Robertson MJ, Bourret V, Bernatchez L, Verspoor E (2015) Transatlantic secondary contact in Atlantic Salmon, comparing microsatellites, a single nucleotide polymorphism array and restriction-site associated DNA sequencing for the resolution of complex spatial structure. Mol Ecol 24:5130–5144

    Article  CAS  PubMed  Google Scholar 

  • Butler IA, Siletti K, Oxley PR, Kronauer DJC (2014) Conserved microsatellites in ants enable population genetic and colony pedigree studies across a wide range of species. PLoS One 9:e107334

    Article  PubMed  PubMed Central  Google Scholar 

  • Cristiano MP, Cardoso DC, Fernandes-Salomão TM, Heinze J (2016) Integrating models and phylogeography in the grass-cutting ant Acromyrmex striatus (Hymenoptera: Formicidae) in southern lowlands of South America. PLoS One 11:e0146734

    Article  PubMed  PubMed Central  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Edwards DP, Frederickson ME, Shepard GH, Yu DW (2009) A plant needs ants like a dog needs fleas: Myrmelachista schumanni ants gall many tree species to create housing. Am Nat 174:734–740

    Article  PubMed  Google Scholar 

  • Elmes GW, Petal J (1990) Queen number as an adaptable trait: evidence from wild populations of two red ant species (Genus Myrmica). J Anim Ecol 59:675–690. https://doi.org/10.2307/4888

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolut Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Fischer MC et al (2017) Estimating genomic diversity and population differentiation – an empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genomics 18:69

    Article  PubMed  PubMed Central  Google Scholar 

  • Frederickson ME (2005) Ant species confer different partners benefits on two neotropical myrmecophytes. Oecologia 143:387–395

    Article  PubMed  Google Scholar 

  • Frederickson ME (2006) The reproductive phenology of an Amazonian ant species reflects the seasonal availability of its nest sites. Oecologia 149:418–427

    Article  PubMed  Google Scholar 

  • Frederickson ME, Gordon DM (2007) The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil’s gardens’ is increased herbivory on Duroia hirsuta trees. Proc R Soc B 274:1117–1123. https://doi.org/10.1098/rspb.2006.0415

    Article  PubMed  PubMed Central  Google Scholar 

  • Frederickson ME, Gordon DM (2009) The intertwined population biology of two Amazonian myrmecophytes and their symbiotic ants. Ecology 90:1595–1607. https://doi.org/10.1890/08-0010.1

    Article  PubMed  Google Scholar 

  • Frederickson ME, Greene MJ, Gordon DM (2005) ‘Devil’s gardens’ bedevilled by ants. Nature 437:495–496

    Article  CAS  PubMed  Google Scholar 

  • Gotoh A, Ito F (2008) Seasonal cycle of colony structure in the Ponerine ant Pachycondyla chinensis in western Japan (Hymenoptera, Formicidae). Insectes Soc 55:98–104

    Article  Google Scholar 

  • Goudet J (1995) FSTAT Version 1.2.: a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Haffer JR (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers Conserv 6:451–476

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. https://doi.org/10.1046/j.1471-8278.2002.00305.x

    Article  Google Scholar 

  • Hodel RGJ et al (2016) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4:1600025

    Article  Google Scholar 

  • Hoffman JI, Amos W (2005) Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol Ecol 14:599–612

    Article  CAS  PubMed  Google Scholar 

  • Hughes WOH, Ratnieks FLW, Oldroyd BP (2008) Multiple paternity or multiple queens: two routes to greater intracolonial genetic diversity in the eusocial Hymenoptera. J Evol Biol 21:1090–1095. https://doi.org/10.1111/j.1420-9101.2008.01532.x

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jeffries DL, Copp GH, Handley LL, Olsén KH, Sayer CD, Hänfling B (2016) Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius, L. Mol Ecol 25:2997–3018

    Article  PubMed  Google Scholar 

  • Jombart T (2008) ADEGENET: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Kaspari M, Pickering J, Longino JT, Windsor D (2001a) The phenology of a Neotropical ant assemblage: evidence for continuous and overlapping reproduction. Behav Ecol Sociobiol 50:290–382

    Article  Google Scholar 

  • Kaspari M, Pickering J, Windsor D (2001b) The reproductive flight phenology of a neotropical ant assemblage. Ecol Entomol 26:245–257

    Article  Google Scholar 

  • Keller L, Passera L, Suzzoni J-P (1989) Queen execution in the Argentine ant, Iridomyrmex humilis. Physiol Entomol 14:157–163

    Article  Google Scholar 

  • Kuhn KM (2014) Colony founding by the ant Myrmelachista flavocotea. Insectes Soc 61:239–245

    Article  Google Scholar 

  • Kümmerli R, Keller L (2009) Patterns of split sex ratio in ants have multiple evolutionary causes based on different within-colony conflicts. Biol Lett 5:713–716. https://doi.org/10.1098/rsbl.2009.0295

    Article  PubMed  PubMed Central  Google Scholar 

  • Longino JT (2006) A taxonomic review of the genus Myrmelachista (Hymenoptera: Formicidae) in Costa Rica. Zootaxa 1141:1–54

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 164:1567–1587

    Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  PubMed  Google Scholar 

  • Rathcke B, Lacey EP (1985) Phenological patterns of terrestrial plants. Annu Rev Ecol S 16:179–214

    Article  Google Scholar 

  • Salas-Lopez A, Talaga S, Lalagüe H (2016) The discovery of devil’s gardens: an ant–plant mutualism in the cloud forests of the Eastern Amazon. J Trop Ecol 32:264–268. https://doi.org/10.1017/S0266467416000195

    Article  Google Scholar 

  • Schultner E, Saramäki J, Helanterä H (2016) Genetic structure of native ant supercolonies varies in space and time. Mol Ecol 25:6196–6213

    Article  PubMed  Google Scholar 

  • Solomon SE, Bacci Jr M, Martins Jr J, Vinha GG, Mueller UG (2008) Paleodistributions and comparative molecular phylogeography of leafcutter ants (Atta spp.) provide new insight into the origins of Amazonian diversity. PLoS one 3:e2738

    Article  PubMed  PubMed Central  Google Scholar 

  • Sündstrom L, Keller L, Chapuisat M (2003) Inbreeding and sex-biased gene flow in the ant Formica exsecta. Evolution 57:1552–1561

    Article  PubMed  Google Scholar 

  • Takezaki N, Kei M, Tamura K (2014) POPTREEW: web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol Biol Evol 31:1622–1624

    Article  CAS  PubMed  Google Scholar 

  • Torres JA, Snelling RR, Canals M (2001) Seasonal and nocturnal periodicities in ant nuptial flights in the tropics (Hymenoptera: Formicidae). Sociobiology 37:601–626

    Google Scholar 

  • Whitlock MC (2011) G’ST and D do not replace FST. Mol Ecol 20:1083–1091

    Article  PubMed  Google Scholar 

  • Wolda H (1978) Seasonal fluctuations in rainfall, food and abundance of tropical insects. J Anim Ecol 47:369–381. https://doi.org/10.2307/3789

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Dirección General Forestal y de Fauna Silvestre of the Ministerio de Agricultura in Peru for permits (Nos. 0299-2011-AG-DGFFS-DGEFFS, 0046-2014-MINAGRI-DGFFS-DGEFFS). We are grateful to A. Coral for assistance in the field. This work was supported by FQEB Grant RFP-12-06 from the National Philanthropic Trust to NEP and MEF, NSF SES-0750480 to NEP and the Natural Sciences and Engineering Research Council of Canada to MEF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. G. Malé.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 291 kb)

Fig. S2

Population structure. Results of the clustering analyses conducted with STRUCTURE. Panel (a): Delta K plot according to STRUCTURE HARVESTER. The x-axis represents the different values of K tested (from 1 to 44), and the y-axis the Delta K value. Panel (b): assignment plot according to CLUMPP. Each vertical bar represents an individual from left to right in the same order as in Table 1, and the y-axis represents the percentage of assignment to clusters. Colors show the two clusters (PDF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malé, P.J.G., Youngerman, E., Pierce, N.E. et al. Mating system, population genetics, and phylogeography of the devil’s garden ant, Myrmelachista schumanni, in the Peruvian Amazon. Insect. Soc. 67, 113–125 (2020). https://doi.org/10.1007/s00040-019-00735-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-019-00735-7

Keywords

Navigation