Skip to main content
Log in

Do mutualistic associations have broader host ranges than neutral or antagonistic associations? A test using myrmecophiles as model organisms

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Symbiotic associations are found across all kingdoms of life and are integral to ecosystem structure and function. Central to understanding the ecology and evolution of symbiotic relationships is an understanding of what influences host range; the number of host species that a symbiont can utilize. Despite the importance of host breadth among symbionts, relatively little is known about how the relationship that a symbiont has with its host influences its host range. Additionally, contrasts among interaction types often involve diverse groups of unrelated host species. To test how host range varied with interaction type, we used a global synthesis of over 1600 species of myrmecophiles, those organisms that have symbiotic associations with ants. We used an indexed literature search to collate known myrmecophile species and their hosts, and to determine how two degrees of dependence (facultative, obligate) and four types of relationships (mutualism, commensalism, kleptoparasitism, and parasitism) among myrmecophiles and their hosts influence host range. Our synthesis showed that, overall, myrmecophiles exhibited a high degree of host specialization, and facultatively dependent myrmecophiles had broader host ranges than those with obligate interactions. Myrmecophiles with mutualistic relationships had broader host ranges than neutral or antagonistic relationships. Additionally, lepidopteran myrmecophiles exhibited broader host range patterns than other taxa. Our results have important implications for how symbiotic associations are understood, with positive relationships (mutualisms) associated with broader host range, and antagonistic relationships (parasitism) associated with narrow host range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc Biol Sci 266:1419–1426

    Article  CAS  PubMed Central  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral–algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1-7. http://CRAN.R-project.org/package=lme4. Accessed Dec 2016

  • Blüthgen N, Mezger D, Linsenmair KE (2006) Ant–hemipteran trophobioses in a Bornean rainforest diversity, specificity and monopolisation. Insectes Soc 53:194–203

    Article  Google Scholar 

  • Boucher DH, James S, Keeler KH (1982) The ecology of mutualism. Annu Rev Ecol Syst 13:315–317

    Article  Google Scholar 

  • Brockmann HJ, Barnard CJ (1979) Kleptoparasitism in birds. Anim Behav 27:487–514

    Article  Google Scholar 

  • Campbell KU, Klompen H, Crist TO (2013) The diversity and host specificity of mites associated with ants: the roles of ecological and life history traits of ant hosts. Insectes Soc 60:31–41

    Article  Google Scholar 

  • Chamberlain SA, Holland JN (2009) Quantitative synthesis of context dependency in ant-plant protection mutualisms. Ecology 90:2384–2392

    Article  PubMed  Google Scholar 

  • Davies NB, Brooker MDL (1989) An experimental study of co-evolution between the Cuckoo, Cuculus canorus, and its hosts. I. Host egg discrimination. J Anim Ecol 58:207–224

    Article  Google Scholar 

  • Delabie JHC (2001) Trophiobiosis between Formicidae and Hemiptera (Sternorrhyncha and Auchenorrhyncha): an overview. Neotropical Entomol 30:501–516

    Article  Google Scholar 

  • Eastwood R, Pierce NE, Kitching RL, Huges JM (2006) Do ants enhance diversification in Lycaenid butterflies? Phylogeographic evidence from a model myrmecophile, Jalmenus evagoras. Evolution 60:315–327

    Article  PubMed  Google Scholar 

  • Edgar MA, Allan RA (2006) Chemical mimicry of the ant Oecophylla smaragdina, by the myrmecophilous spider Cosmophasis bitaeniata: is it colony-specific? J Ethol 24:239–246

    Article  Google Scholar 

  • Fleming TH, Holland JN (1998) The evolution of obligate pollination mutualisms: senita cactus and senita moth. Oecologia 114:368–375

    Article  PubMed  Google Scholar 

  • Fielder K (1996) Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. Entomol Exp Appl 80:259–267

    Article  Google Scholar 

  • Glasier JRN, Acorn JH (2013) First record of the myrmecophilous sap beetle Amphotis ulkei Leconte (Coleoptera: Nitidulidae) in Canada. Coleopterists Bull 67:188–189

    Article  Google Scholar 

  • Gray B (1971) Note on the biology of the ant species Myrmecia dispar (Clark) (Hymenoptera: Formicidae). Insectes Soc 2:71–80

    Article  Google Scholar 

  • Hoeksema JD, Bruna EM (2000) Pursuing the big questions about interspecific mutualism: a review of theoretical approaches. Oecologia 125:321–330

    Article  PubMed  Google Scholar 

  • Hölldobler B (1971) Communications between ants and their guests. Sci Am 224:86–93

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. The Belknap Press of Harvard University Press, Cambridge

    Book  Google Scholar 

  • Hughes DP, Pierce NE, Boomsma JJ (2008) Social insect symbionts: evolution in homeostatic fortresses. Trends Ecol Evol 23:672–677

    Article  PubMed  Google Scholar 

  • Ivens ABF (2015) Cooperation and conflict in ant (Hymenoptera: Formicidae) farming mutualisms—a review. Myrmecol News 21:19–36

    Google Scholar 

  • Jackson DE, Ratnieks FLW (2006) Communication in ants. Curr Biol 16:570–574

    Article  CAS  PubMed  Google Scholar 

  • Kaminski LA, Freiras AVL, Oliveira PS (2010) Interactions between mutualisms: ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Am Nat 176:322–334

    Article  PubMed  Google Scholar 

  • Kaminski LA, Rodrigues DA (2011) Species-specific levels of ant attendance mediate performance costs in a facultative myrmecophilous butterfly. Physiol Entomol 36:208–214

    Article  Google Scholar 

  • Kamiya T, O’Dwyer K, Nakagawa S, Poulin R (2014) Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37:689–697

    Article  Google Scholar 

  • Kawakita A, Okamoto T, Goto R, Kato M (2010) Mutualism favours higher host specificity than does antagonism in plant-herbivore interaction. Proc R Soc B 277:2756–2774

    Article  Google Scholar 

  • Kindlmann P, Hulle M, Stadler B (2007) Timing of dispersal: effect of ants on aphids. Oecologia 152:625–631

    Article  PubMed  Google Scholar 

  • Kistner DH (1982) The social insects’ bestiary. In: Hermann HR (ed) Social insects, pp 1–244. Academic Press, New York

    Google Scholar 

  • Komatsu T, Maruyama M, Itino T (2009) Behavioral differences between two ant cricket species in Nansei Islands: host-specialist versus host-generalist. Insectes Soc 56:389–396

    Article  Google Scholar 

  • Krasnov BR, Mouillot D, Shenbrot GI, Khokhlova IS, Poulin R (2001) Beta-specificity: the turnover of host species in space and another way to measure host specificity. Int J Parasitol 41:33–41

    Article  Google Scholar 

  • Kronauer DJC, Pierce NE (2011) Myrmecophiles. Curr Biol 21:208–209

    Article  CAS  Google Scholar 

  • Lapeva-Gjonova A, Rücker WH (2011) Latridiidae and Endomychidae beetles (Coleoptera) from ant nests in Bulgaria. Latridiidae 8:1–8

    Google Scholar 

  • Lencina JL, Torres JL, Baena M, Andújar C, Gallego D, González E, Zuzarte AJ (2011) Notas sobre Amphotis Erichson, 1843. Ibéros (Coleoptera: Nitidulidae). Bol Soc Entomol Aragon 49:149–152

    Google Scholar 

  • Loiacono MS, Margaria CB, Aquino DA (2013) Diapriinae wasps (Hymenoptera: Diaprioidea: Diapriidae) associated with ants (Hymenoptera: Formicidae) in Argentina. Psyche 2013:1–11

    Article  Google Scholar 

  • Machado CA, Robbins N, Thomas M, Gilbert P, Herre EA (2005) Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism. Proc Natl Acad Sci 102:6558–6565

    Article  CAS  PubMed  Google Scholar 

  • Maruyama M, Parker J (2017) Deep-time convergence in rove beetle symbionts of army ants. Curr Biol 27:920–926. https://doi.org/10.1016/j.cub.2017.02.030

    Article  CAS  PubMed  Google Scholar 

  • Maschwitz U, Hänel H (1985) The migrating herdsman Dolichoderus (Diabolus) cuspidatus: an ant with a novel life mode. Behav Ecol Sociobiol 17:171–184

    Google Scholar 

  • Mynhardt G (2013) Declassifying myrmecophily in the Coleoptera to promote the study of ant-beetle symbioses. Psyche 2013:1–8

    Article  Google Scholar 

  • Nunn CL, Altizer S, Sechrest W, Jones KE, Barton R, Gittleman JL (2004) Parasites and the evolutionary diversification of primate clades. Am Nat 164:90–103. https://doi.org/10.1086/424608

    Article  Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233

    Article  Google Scholar 

  • Oliver TH, Leather SR, Cook JM (2008) Macroevolutionary patterns in the origin of mutualisms involving ants. J Evol Biol 21:1597–1608

    Article  CAS  PubMed  Google Scholar 

  • Ollerton J, McCollin D, Fautin DG, Allen GR (2007) Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc R Soc B 274:591–598

    Article  PubMed  Google Scholar 

  • Parker J, Grimaldi DA (2014) Specialized myrmecophily at the ecological dawn of modern ants. Curr Biol 24:2428–2434. https://doi.org/10.1016/j.cub.2014.08.068

    Article  CAS  PubMed  Google Scholar 

  • Parker J (2016) Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecol News 22:65–108

    Google Scholar 

  • Papstamatiou TP, Wetherbee BM, O’Sullivan J, Goodmanlowe GD, Lowe CG (2010) Foraging ecology of Cookiecutter Sharks (Isistius brasiliensis) on pelagic fishes in Hawaii, inferred from prey bite wounds. Environ Biol Fishes 88:361–368

    Article  Google Scholar 

  • Pellissier L, Kostikova A, Litsios G, Salamin N, Alvarez N (2017) High rate of protein coding sequence evolution and species diversification in the Lycaenids. Front Ecol Evol 5:1–7

    Article  Google Scholar 

  • Poore AGB, Hill NA, Sotka EE (2008) Phylogenetic and geographic variation in host breadth and composition by herbivorous amphipods in the family Ampithoidae. Evolution 62:21–38

    PubMed  Google Scholar 

  • Porter SD (1998) Biology and behaviour of Pseudacteon decapitating flies (Diptera: Phoridae) that parasitize Solenopsis fire ants (Hymenoptera: Formicidae). Fla Entomol 81:292–309

    Article  Google Scholar 

  • Poulin R (1999) The functional importance of parasites in animal communities: many roles at many levels? Int J Parasitol 29:903–914

    Article  CAS  PubMed  Google Scholar 

  • Poulin R (2004) Macroecological patterns of species richness in parasite assemblages. Basic Appl Ecol 5:423–434

    Article  Google Scholar 

  • Poulin R, Krasnov BR, Mouillot D (2011) Host specificity in phylogenetic and geographic space. Trends Parasitol 27:355–361

    Article  PubMed  Google Scholar 

  • Price PW (1980) Evolutionary biology of parasites. Princeton University Press, New Jersey

    Google Scholar 

  • Proctor H, Owens I (2000) Mites and birds: diversity. Parasit Coevol TREE 15:358–364

    CAS  Google Scholar 

  • Ramirez W (1970) Host specificity of fig wasps (Agaonidae). Evolution 24:680–691

    Article  Google Scholar 

  • Rettenmeyer CW, Rettenmeyer ME, Joseph J, Berghoff SM (2011) The largest animal association centered on one species: the army ant Eciton burchellii and its more than 300 associates. Insectes Soc 58:281–292

    Article  Google Scholar 

  • Rodrigues D, Kaminski LA, Freitas AVL, Oliveira PS (2010) Trade-offs underlying polyphagy in a facultative ant-tended florivorous butterfly: the role of host plant quality and enemy-free space. Oecologia 163:719–728

    Article  PubMed  Google Scholar 

  • Rubin BER, Moreau CS (2016) Comparative genomics reveals convergent rates of evolution in ant–plant mutualisms. Nature Commun 7:1–11

    Article  CAS  Google Scholar 

  • Sakagami SF, Inoue T, Yamane S, Salmah S (1989) Nest of the myrmecophilous stingless bee Trigona moorei: how do bees initiate their nest within an arboreal ant nest? Biotropica 21:265–274

    Article  Google Scholar 

  • Sala M, Casacci LP, Balletto E, Bonelli S, Barbero F (2014) Variation in butterfly larval acoustics as a strategy to infiltrate and exploit host ant colony resources, PLoS One. https://doi.org/10.1371/journal.pone.0094341

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Pena S, Davis DR, Mueller UG (2003) A gregarious, mycophagous, myrmecophilous moth, Amydria anceps Walsingham (Lepidoptera: Acrophidae), living in Atta mexicana (Smith F) (Hymenoptera: Formicidae) spent fungal culture accumulations. Proc Entomol Soc Wash 105:186–194

    Google Scholar 

  • Sanders CJ (1964) The biology of carpenter ants in New Brunswick. Can Entomol 96:894–909

    Article  Google Scholar 

  • Schär S, Vorburger C (2013) Host specialization of parasitoids and their hyperparasitoids on a pair of syntopic aphid species. Bull Entomol Res 103:530–537

    Article  PubMed  Google Scholar 

  • Schneider SA, LaPolla JS (2011) Systematics of the mealybug tribe Xenococcini (Hemiptera: Coccoidea: Pseudococcidae), with a discussion of trophobiotic associations with Acropyga Roger ants. Syst Entomol 36:57–82

    Article  Google Scholar 

  • Schönrogge K, Wardlaw JC, Thomas JA, Thomas GW (2000) Polymorphic growth rates in myrmecophilous insects. Proc R Soc Lond B Biol Sci 267:771–777

    Article  Google Scholar 

  • Smith CR, Oettler J, Kay A, Deans C (2007) First recorded mating flight of the hypogeic ant, Acropyga epedana, with its obligate mutualist mealybug, Rhizoecus colombiensis. J Insect Sci 7:1–5

    Article  PubMed  Google Scholar 

  • Stadler B, Dixon AFG (1999) Ant attendance in aphids: why different degrees of myrmecophily? Ecol Entomol 24:363–369

    Article  Google Scholar 

  • Tegelaar K, Hagman M, Glinwood R, Pattersson J, Leimar O (2012) Ant–aphid mutualism: the influence of ants on the aphid summer cycle. Oikos 121:61–66

    Article  Google Scholar 

  • Thomas JA, Elmes GW (2004) Higher productivity at the cost of increased host–specificity when Maculinea butterfly larvae exploit ant colonies through trophollaxis rather than by predation. Ecological Entomology 23:457–464

    Article  Google Scholar 

  • Thompson JN (1994) The coevolutionary process. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Van Klinken RD (2000) Host specificity testing: why do we do it and how we can do it better. In: Van Driesche R, Heard TA, McClay AS, Reardon R (eds), Proceedings of session: host specificity testing of exotic arthropod biological control agents—the biological basis for improvement in safety. USDA Forest Service, Publication #FHTET-99-1, Morgantown, pp 54–68

    Google Scholar 

  • Voigt CC, Kelm DH (2006) Host preference of the common vampire bat (Desmodus rotundus; Chiroptera) assessed by stable isotopes. J Mammal 87:1–6

    Article  Google Scholar 

  • von Beeren C, Maruyama M, Hashim R, Witte V (2011) Differential host defense against multiple parasites in ants. Evol Ecol 25:259–276

    Article  Google Scholar 

  • Werner G, Guven S (2007) GLM basic modeling: avoiding common pitfalls. Casualty Actuarial Society Forum. United Book Press, Baltimore, MD, pp 257–272

    Google Scholar 

  • Witek M, Śliwińska EB, Skórka P, Nowicki P, Wantuch M, Vrabec V, Settele J, Woyciechowski M (2008) Host ant specificity of large blue butterflies Phengaris (Maculinea) (Lepidoptera: Lycaenidae) inhabiting humid grasslands in east–central Europe. Eur J Entomol 105:871–877

    Article  Google Scholar 

  • Witte V, Foitzik S, Hashim R, Maschwitz U, Schulz S (2009) Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda. J Chem Ecol 35:355–367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gerry Cassis, Stephen Bonser, and Angela Moles for comments on an earlier version of this manuscript. We thank Mitchell Lyons and Andrew Letten for advice on statistical analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. N. Glasier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 46 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glasier, J.R.N., Poore, A.G.B. & Eldridge, D.J. Do mutualistic associations have broader host ranges than neutral or antagonistic associations? A test using myrmecophiles as model organisms. Insect. Soc. 65, 639–648 (2018). https://doi.org/10.1007/s00040-018-0655-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-018-0655-2

Keywords

Navigation