Skip to main content
Log in

Wing morphometrics indicates the existence of two distinct phenotypic clusters within population of Tetragonula iridipennis (Apidae: Meliponini) from India

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Description of biodiversity is often cited as one of the most important actions necessary for conservation programs. There are more than 600 species of stingless bees spread over the Tropical regions of the world; though for various species, little is known about their biology and taxonomy. We sampled bees from feral colonies from various regions of India and compared them using wing morphology. The results of population analysis of the patterns of wing venation, using geometric morphometric techniques, suggested the existence of at least two phenotypic clusters within our samples of the so-called Tetragonula iridipennis complex. These findings were supported by other features, including differences in nest architecture. This helps to explain the patterns of variability found in stingless bees in India and also will be valuable for conservation planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos-Filho PS, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658

    Article  Google Scholar 

  • Batalha-Filho H, Waldschmidt AM, Campos LAO, Tavares MG, Fernandes-Salomão TM (2010) Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): incongruence between morphology and mitochondrial DNA. Apidologie 41:534–547

    Article  CAS  Google Scholar 

  • Batista VS, Fernandes FA, Cordeiro-Estrela P, Sarquis O, Lima MM (2013) Ecotype effect in Triatoma brasiliensis (Hemiptera: Reduviidae) suggests phenotypic plasticity rather than adaptation. Med Vet Entomol 27:247–254

    Article  PubMed  CAS  Google Scholar 

  • Bonatti V, Simões ZLP, Franco FF, Francoy TM (2014) Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Naturwissenschaften 101:17–24

    Article  PubMed  CAS  Google Scholar 

  • Camargo JMF, Pedro SRM (2003) Meliponini neotropicais: o gênero Partamona Schwarz, 1939 (Hymenoptera, Apidae, Apinae): bionomia e biogeografia. Rev Bras Entomol 47:311–372

    Google Scholar 

  • Combey R, Teixeira JSG, Bonatti V, Kwapong P, Francoy TM (2013) Geometric morphometrics reveals morphological differentiation within four African stingless bee species. Ann Biol Res 4:93–103

    Google Scholar 

  • Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW, Dollin A, Heard T, Aguilar IB, Venturieri GC, Eardley C, Nogueira-Neto P (2006) Global Meliponiculture: challenges and opportunities. Apidologie 37:275–292

    Article  Google Scholar 

  • Danforth BN, Cardinal SC, Praz C, Almeida EAB, Michez D (2013) Impact of molecular data on our understanding of bee phylogeny and evolution. Annu Rev Entomol 58:57–78

    Article  PubMed  CAS  Google Scholar 

  • Debat V, Bégin M, Legout H, David JR (2003) Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature. Evolution 57:2773–2784

    Article  PubMed  Google Scholar 

  • Dewulf A, De Meulemeester T, Dehon M, Engel MS, Michez D (2014) A new interpretation of the bee fossil Melitta willardi Cockerell (Hymenoptera, Melittidae) based on geometric morphometrics of the wing. ZooKeys 389:35–48

    Article  PubMed  Google Scholar 

  • Engel MS (2000) A new interpretation of the oldest fossil bee (Hymenoptera, Apidae). Am Mus Novit, Number 3296

    Google Scholar 

  • Francisco FO, Nunes-Silva P, Francoy TM, Wittmann D, Imperatriz-Fonseca VL, Arias MC, Morgan ED (2008) Morphometrical, biochemical and molecular tools for assessing biodiversity. An example in Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Insect Soc 55:231–237

    Article  Google Scholar 

  • Francoy TM, Prado PPR, Goncalves LS, Costa LD (2006) Morphometric differences in a single wing cell can discriminate Apis mellifera racial types. Apidologie 37:91–97

    Article  Google Scholar 

  • Francoy TM, Wittman D, Drauschke M, Muller S, Steinhage V, Bezerra-Laure MAF, De Jong D, Goncalves LS (2008) Identification of Africanized honey bees through wing morphometrics: two fast and efficient procedures. Apidologie 39:488–494

    Article  Google Scholar 

  • Francoy TM, Silva RAO, Nunes-Silva P, Menezes C, Imperatriz-Fonseca VL (2009) Gender identification of five genera of stingless bees (Apidae Meliponini) based on wing morphology. Genet Mol Res 8:207–214

    Article  PubMed  CAS  Google Scholar 

  • Francoy TM, Grassi ML, Imperatriz-Fonseca VL, May-Itzá WJ, Quezada-Euán JJG (2011) Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42:499–507

    Article  Google Scholar 

  • Francoy TM, Franco FF, Roubik DW (2012) Integrated landmark and outline-based morphometric methods efficiently distinguish species of Euglossa (Hymenoptera Apidae Euglossini). Apidologie 43:609–617

    Article  Google Scholar 

  • Freitas BM, Imperatriz-Fonseca VL, Medina LM, Kleinert AMP, Galetto L, Nates-Parra G, Quezada-Euán JJG (2009) Diversity threats and conservation of native bees in the neotropics. Apidologie 40:332–346

    Article  Google Scholar 

  • Gibbs J (2009) New species in the Lasioglossum petrellum species group identified through an integrative taxonomic approach. Can Entomol 141:371–396

    Article  Google Scholar 

  • Halcroft MT, Dollin A, Francoy TM, King JE, Riegler M, Haigh AM, Spooner-Hart RN (2015) Delimiting the species within the genus Austroplebeia, an Australian stingless bee, using multiple methodologies. Apidologie. doi:10.1007/s13592-015-0377-7

    Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  PubMed  CAS  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, Dewaard JR (2003) Biological identifications through DNA barcodes. P R Soc B 270:313–321

    Article  CAS  Google Scholar 

  • Hedtke SM, Patiny S, Danforth BN (2013) Resolving the Bee Tree of Life: bioinformatic approaches to apoid phylogeny. BMC Evol Biol 13:138

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hurtado-Burillo M, Ruiz C, May-Itzá WJ, Quezada-Euán JJG, De La Rúa P (2013) Barcoding stingless bees: genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 44:1–10

    Article  Google Scholar 

  • Jorge LR, Cordeiro-Estrela P, Klaczko LSB, Moreira GRP, Freitas AVL (2011) Host-plant dependent wing phenotypic variation in the neotropical butterfly Heliconius erato. Biol J Linn Soc 102:765–774

    Article  Google Scholar 

  • Kalinowsi ST (2009) How well do evolutionary trees describe genetic relationships between populations? Heredity 102:506–513

    Article  Google Scholar 

  • Kawakita A, Ascher JS, Sota T, Kato M, Roubik DW (2008) Phylogenetic analysis of the corbiculate bee tribes based on 12 nuclear protein-coding genes (Hymenoptera: Apoidea: Apidae). Apidologie 39:163–175

    Article  Google Scholar 

  • Kotthoff U, Wappler T, Engel MS (2013) Greater past disparity and diversity hints at ancient migrations of European honey bee lineages into Africa and Asia. J Biogeogr 40:1832–1838

    Google Scholar 

  • Mao AA, Hynniewta TM (2000) Floristic diversity of northeast India. J Assam Sci Soc 41:255–266

    Google Scholar 

  • Mao AA, Hynniewta TM, Sanjappa M (2009) Plant wealth of Northeast India with reference to ethnobotany. Indian J Tradit Know 8:96–103

    Google Scholar 

  • Mendes MFM, Francoy TM, Nunes-Silva P, Menezes C, Imperatriz-Fonseca VL (2007) Intra-populational variability of Nannotrigona testaceicornis Lepeletier 1836 (Hymenoptera: Meliponini) using relative warp analysis. Biosc J 23:147–152

    Google Scholar 

  • Michener CD (2000) The bees of the World. The John Hopkins Univ Press, Baltimore, p 913

    Google Scholar 

  • Moure JS (1961) A preliminary supra-specific classification of the old world meliponine bees (Hymenoptera, Apoidea). Stud Entomol 4:181–242

    Google Scholar 

  • Oleksa A, Tofilski A (2014) Wing geometric morphometrics and microsatellite analysis provide similar discrimination of honey bee subspecies. Apidologie. doi:10.1007/s13592-014-0300-7

    Google Scholar 

  • Quezada-Euán JJG, May-Itzá WJ, Rincón M, De La Rúa P, Paxton RJ (2012) Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conserv Diver 5:433–443

    Article  Google Scholar 

  • Ramírez SR, Nieh JC, Quental TB, Roubik DW, Imperatriz-Fonseca VL, Pierce NE (2010) A molecular phylogeny of the stingless bee genus Melipona (Hymenoptera: Apidae). Mol Phylogenet Evol 56:519–525

    Article  PubMed  Google Scholar 

  • Rasmussen C (2013) Stingless bees (Hymenoptera: Apidae: Meliponini) of the Indian subcontinent: diversity, taxonomy and current status of knowledge. Zootaxa 3647:401–428

    Article  PubMed  Google Scholar 

  • Rasmussen C, Cameron SA (2010) Global stingless bee phylogeny supports ancient divergence vicariance and long distance dispersal. Biol J Linn Soc 99:206–232

    Article  Google Scholar 

  • Rohlf FJ (2007) tpsRelw version 1.45. Department of Ecology and Evolution State University of New York Stony Brook

  • Rohlf FJ (2008) tpsDig version 2.12. Department of Ecology and Evolution State University of New York Stony Brook

  • Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, Cambridge 514 pp

    Book  Google Scholar 

  • Sakagami SF (1978) Tetragonula stingless bees of the continental Asia and Sri Lanka (Hymenoptera:Apidae). J Fac Sci Hokkaido Univ Ser V I Zool 2:165–247

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vijayakumar K, Jeyaraaj R (2013) Geometric morphometry analysis of three species of stingless bees in India. Int J Life Sci Edu Res 1:91–95

    Google Scholar 

  • Vijayakumar K, Jeyaraaj R (2014) Taxonomic notes on stingless bee Trigona (Tetragonula) iridipennis Smith (Hymenoptera: Apidae) from India. J Threatened Taxa 6:6480–6484

    Article  Google Scholar 

  • Wappler T, De Meulemeester T, Aytekin AM, Michez D, Engel MS (2012) Geometric morphometric analysis of a new Miocene bumble bee from the Randeck Maar of southwestern Germany (Hymenoptera: Apidae). Syst Entomol 37:784–792

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, for funding this study. Acknowledgements are also due to Dr. M. Muthuraman, Tamil Nadu Agricultural University, Coimbatore, Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, Dr. K.V. Lazar, Calicut University, Calicut, Dr. S. Devanesan, Kerala Agricultural University, Thiruvananthapuram, Dr. SushamaChapalkar, VidyaPratishtan’s School of Biotechnology, Baramati and Dr. A. Rahman, Assam Agricutural University, Jorhat, for making the material available for the study. The authors are grateful to FAPESP (Proc. 2011/07857-9 to TMF and Proc. 2013/20358-7 to VB) and NAP BioComp (University of São Paulo) for financial support and to Thibaut De Meulemeester and an anonymous reviewer for suggestions. Dr. David de Jong helped us to improve the English of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Francoy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1: Map indicating the sampling sites of Tetragonula iridipennis. (JPEG 151 kb)

40_2015_442_MOESM2_ESM.jpg

Supplementary Figure 2: Scatterplot of the two first axis of the canonical discriminant analysis of the Indian populations of Tetragonula iridipennis. (JPEG 134 kb)

40_2015_442_MOESM3_ESM.jpg

Supplementary Figure 3: Nest structure of Tetragonula iridipennis bees sampled in Kerala state, with the brood cells constructed as a cluster. (JPEG 494 kb)

40_2015_442_MOESM4_ESM.jpg

Supplementary Figure 4: Nest structure of Tetragonula iridipennis bees sampled in Assam state, with the brood cells constructed as layers. (JPEG 371 kb)

Supplementary material 5 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Francoy, T.M., Bonatti, V., Viraktamath, S. et al. Wing morphometrics indicates the existence of two distinct phenotypic clusters within population of Tetragonula iridipennis (Apidae: Meliponini) from India. Insect. Soc. 63, 109–115 (2016). https://doi.org/10.1007/s00040-015-0442-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-015-0442-2

Keywords

Navigation