Skip to main content
Log in

Thermoelastic interactions on temperature-rate-dependent two-temperature thermoelasticity in an infinite medium subjected to a line heat source

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

Thermoelastic interactions in a linear, isotropic and homogeneous unbounded solid resulting from a continuous line heat source are investigated utilizing modified temperature-rate-dependent two-temperature thermoelasticity theory (MTRDTT, recently proposed by Shivay and Mukhopadhyay in J Heat Transf 142:4045241, 2019). By incorporating the temperature-rate terms of thermodynamic temperature and conductive temperature, the two-temperature relation is modified in this theory. The problem is studied with the unified version of two-temperature relation to compare the results for displacement, temperatures and stresses in the MTRDTT model with the corresponding results of the two-temperature Green-Lindsay (TTGL) model. To solve the problem, Laplace and Hankel transforms are employed. Explicit expressions for these field variables are obtained for the short-time approximation case. Further, the computational tool is used to graphically depict the analytical findings and compare the results obtained from both models. Some important observations about these models are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  3. Green, A.E., Laws, N.: On the entropy production inequality. Arch. Ration. Mech. Anal. 45(1), 47–53 (1972)

    Article  MathSciNet  Google Scholar 

  4. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2(1), 1–7 (1972)

    Article  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stress. 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  7. Green, A.E., Naghdi, P.M.: A Re-examination of the basic postulates of thermomechanics. Proc. R. Soc. A Math. Phys. Eng. Sci. 432, 171–194 (1991)

    MathSciNet  MATH  Google Scholar 

  8. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    Article  Google Scholar 

  9. Chen, P.J., Gurtin, M.E., Williams, W.O.: A note on non-simple heat conduction. Z. Angew. Math. Phys. 19, 969–970 (1968)

    Article  Google Scholar 

  10. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Z. Angew. Math. Phys. 20, 107–112 (1969)

    Article  Google Scholar 

  11. Youssef, H.M.: Theory of two-temperature-generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    Article  MathSciNet  Google Scholar 

  12. Youssef, H.M., El-Bary, A.A.: Theory of hyperbolic two-temperature generalized thermoelasticity. Mater. Phys. Mech. 40, 158–171 (2018)

    Google Scholar 

  13. Shivay, O.N., Mukhopadhyay, S.: On the temperature-rate dependent two-temperature thermoelasticity theory. J. Heat Transf. 142, 4045241 (2019). https://doi.org/10.1115/1.4045241

    Article  Google Scholar 

  14. Warren, W.E., Chen, P.J.: Wave propagation in the two-temperature theory of thermoelasticity. Acta Mech. 16, 21–33 (1973)

    Article  Google Scholar 

  15. Puri, P., Jordan, P.M.: On the propagation of harmonic plane waves under the two-temperature theory. Int. J. Eng. Sci. 44, 1113–1126 (2006)

    Article  MathSciNet  Google Scholar 

  16. Youssef, H.M., Al-Lehaibi, E.A.: State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. Int. J. Solids Struct. 44, 1550–1562 (2007)

    Article  Google Scholar 

  17. Kumar, R., Mukhopadhyay, S.: Effects of thermal relaxation time on plane wave propagation under two-temperature thermoelasticity. Int. J. Eng. Sci. 48, 128–139 (2010)

    Article  MathSciNet  Google Scholar 

  18. Magana, A., Quintanilla, R.: Uniqueness and growth of solutions in two-temperature generalized thermoelastic theories. Math. Mech. Solids 14, 622–634 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kumar, R., Kumar, R., Mukhopadhyay, S.: An investigation on thermoelastic interactions under two-temperature thermoelasticity with two relaxation parameters. Math. Mech. Solids 21, 725–736 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kumar, R., Kant, S., Mukhopadhyay, S.: An in-depth investigation on plane harmonic waves under two-temperature thermoelasticity with two relaxation parameters. Math. Mech. Solids 22, 191–209 (2017)

    Article  MathSciNet  Google Scholar 

  21. Miranville, A., Quintanilla, R.: On the spatial behavior in two-temperature generalized thermoelastic theories. Z. Angew. Math. Phys. 68, 110 (2017)

    Article  MathSciNet  Google Scholar 

  22. Jangid, K., Mukhopadhyay, S.: Variational and reciprocal principles on the temperature-rate dependent two-temperature thermoelasticity theory. J. Therm. Stress. 43, 816–828 (2020)

    Article  Google Scholar 

  23. Kumar, R., Prasad, R., Kumar, R.: Thermoelastic interactions on hyperbolic two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity. Eur. J. Mech. Solids 82, 104007 (2020)

    Article  MathSciNet  Google Scholar 

  24. Fernández, J.R., Quintanilla, R.: Uniqueness and exponential instability in a new two-temperature thermoelastic theory. AIMS Math. 6, 5440–5451 (2021)

    Article  MathSciNet  Google Scholar 

  25. Shivay, O.N., Mukhopadhyay, S.: Thermomechanical interactions due to mode-I crack under modified temperature-rate dependent two-temperature thermoelasticity theory. Waves Random Complex Med. (2022). https://doi.org/10.1080/17455030.2022.2090640

    Article  Google Scholar 

  26. Sherief, H.H., Anwar, M.N.: Problem in generalized thermoelasticity. J. Therm. Stress. 9, 165–181 (1986)

    Article  Google Scholar 

  27. Chandrasekharaiah, D.S., Murthy, H.N.: Temperature-rate-dependent thermoelastic interactions due to a line heat source. Acta Mech. 89, 1–12 (1991)

    Article  Google Scholar 

  28. Ezzat, M.A.: Fundamental solution in thermoelasticity with two relaxation times for cylindrical regions. Int. J. Eng. Sci. 33, 2011–2020 (1995)

    Article  Google Scholar 

  29. Dhaliwal, R.S., Majumdar, S.R., Wang, J.: Thermoelastic waves in an infinite solid caused by a line heat source. Int. J. Math. Sci. 20, 323–334 (1997)

    Article  MathSciNet  Google Scholar 

  30. Chandrasekharaiah, D., Srinath, K.: Thermoelastic interactions without energy dissipation due to a line heat source. Acta Mech. 128, 243–251 (1998)

    Article  MathSciNet  Google Scholar 

  31. Prasad, R., Kumar, R., Mukhopadhyay, S.: Effects of phase lags on wave propagation in an infinite solid due to a continuous line heat source. Acta Mech. 217, 243–256 (2011)

    Article  Google Scholar 

  32. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, New York (1973)

    Book  Google Scholar 

Download references

Acknowledgements

One of the authors (Komal Jangid) thankfully acknowledges the full financial assistance from the Council of Scientific and Industrial Research (CSIR), India, as the JRF fellowship (File. No. 09/1217(0057)/2019-EMR-I) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Komal Jangid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The different notations used in Eqs. (37)–(46) are given as follows:

$$\begin{aligned} d_{10}&=a_{10}-2a_{11}\tau _{1},d_{11}=a_{11}-a_{12}\tau _{1},d_{12} =a_{10}^{2}+a_{11}^{2}\tau _{1}^{2},\\ d_{13}&=a_{11}-2a_{12},d_{14}=a_{20}-2a_{22}\tau _{1},d_{15} =a_{3}(2a_{10}\tau _{1}d_{11}-d_{12}),\\ d_{16}&=a_{3}a_{10}(a_{10}-2\tau _{1}d_{11})+a_{3}a_{11}\tau _{1}^{2}d_{13},\\ f_{41}&=a_{10}a_{1}a_{3}A_{1},f_{42}=a_{11}a_{1}a_{3}A_{1},f_{43}=a_{12}a_{3} -\frac{\tau _{1}^{2}}{a_{3}\tau _{2}a_{10}},\\ f_{44}&=\frac{a_{20}\beta a_{1}A_{1}\tau _{1}^{2}}{a_{3}\tau _{2}^{2}},f_{45} =A_{1}\left( 1-\frac{1}{a_{10}^{2}}\right) ,\\ f_{46}&=\frac{2a_{11}A_{1}+a_{20}^{2}a_{10}f_{45}}{a_{10}^{3}},f_{47} =\frac{A_{1}}{a_{10}^{2}},f_{48}=-f_{46},\\ f_{49}&=\frac{-a_{3}a_{10}^{2}f_{45}}{\tau _{1}},f_{50}=f_{45}\left\{ 1 +\frac{a_{3}a_{10}d_{10}}{\tau _{1}^{2}}\right\} +\frac{f_{46}d_{15}}{\tau _{1}^{3}},\\ f_{51}&=\frac{f_{45}d_{15}}{\tau _{1}^{3}}+\frac{f_{46}d_{16}}{\tau _{1}^{4}},f_{52} =f_{47}\left\{ \frac{a_{3}(a_{20}d_{14}-a_{21}^{2}\tau _{1})}{\tau _{1}^{2}}\right\} +f_{48}\left\{ 1-\frac{a_{3}a_{20}^{2}}{\tau _{1}}\right\} ,\\ f_{53}&=-a_{1}a_{3}A_{1},f_{54}=f_{52}a_{1}\tau _{1},\\ f_{55}&=-(a_{11}f_{43}+a_{12}f_{42}+a_{1}f_{51}),f_{56}=-f_{54},f_{57} =-(a_{20}f_{44}+a_{1}f_{52}),\\ f_{58}&=\frac{(\lambda _{1}-1)}{r}f_{41},f_{59}=\frac{(\lambda _{1}-1)}{r}f_{42}, f_{60}=\frac{(\lambda _{1}-1)}{r}f_{43},f_{61}=\frac{(\lambda _{1}-1)}{r}f_{44},\\ f_{62}&=-(a_{10}\lambda _{1}+a_{1}\tau _{1}f_{49}),f_{63}=-\lambda _{1}(a_{10}f_{43}+a_{11}f_{42} +a_{12}f_{41})-a_{1}(f_{50}+\tau _{1}f_{51}),\\ f_{64}&=-(a_{11}\lambda _{1}f_{43}+a_{12}\lambda _{1}f_{42}+a_{1}f_{51}),f_{65}=f_{56},\\ f_{66}&=-(a_{20}\lambda _{1}f_{44}+a_{1}f_{52}),f_{67}=-f_{58},f_{68}=-f_{59},f_{69} =-f_{60},f_{70}=-f_{61},\\ d_{16}&=b_{10}+b_{11}\tau _{1},d_{17}=b_{11}+3b_{12}\tau _{1},d_{18} =1+3a_{3}b_{11}^{2},d_{19}=1-a_{3}b_{20}^{2},\\ d_{20}&=2b_{11}\tau _{1}-b_{20}b_{10},g_{41}=b_{10}a_{1}a_{3}A_{1}\tau _{1}, g_{42}=a_{1}a_{3}A_{1}d_{16},\\ g_{43}&=\frac{a_{1}a_{3}A_{1}b_{10}d_{18}-A_{1}a_{1}\tau _{1}d_{19}}{b_{10}}, g_{44}=\frac{-a_{1}A_{1}b_{20}\tau _{1}d_{20}}{b_{10}^{2}},g_{45}=\frac{a_{1}A_{1}b_{20}d_{19}d_{20}}{b_{10}^{3}},\\ g_{46}&=A_{1}\left( 1-\frac{1}{b_{10}^{2}}\right) ,g_{47}=\frac{2A_{1}b_{11}}{b_{10}^{3}}, \,g_{48}=\frac{A_{1}}{b_{10}^{2}},g_{49}=-g_{47},g_{50}=-g_{46}a_{3}b_{10}^{2},\\ g_{51}&=-a_{3}b_{10}(g_{47}b_{10}+2g_{46}b_{11}),g_{52}=g_{46}(1-a_{3}b_{11}^{2} -2a_{3}b_{10}b_{12})-2g_{47}a_{3}b_{10}b_{11},\\ g_{53}&=g_{48}d_{19},g_{54}=g_{49}d_{19},g_{55}=-(b_{10}g_{41}+a_{1}\tau _{1}g_{50}),\\ g_{56}&=-(b_{10}g_{42}+b_{11}g_{41}+a_{1}g_{50}+a_{1}\tau _{1}g_{51}),\\ g_{57}&=-(b_{10}g_{43}+b_{11}g_{42}+b_{12}g_{41}+a_{1}g_{51}+a_{1}\tau _{1}g_{52}), \,g_{58}=-(b_{11}g_{43}+b_{12}g_{42}+a_{1}g_{52}),\\ g_{59}&=-a_{1}(g_{54}+\tau _{1}g_{53}),g_{60}=-a_{1}(g_{53}+\tau _{1}g_{54}), \,g_{61}=-b_{20}g_{44},\\ g_{62}&=\frac{(\lambda _{1}-1)}{r}g_{41},g_{63}=\frac{(\lambda _{1}-1)}{r}g_{42}, g_{64}=\frac{(\lambda _{1}-1)}{r}g_{43},g_{65}=\frac{(\lambda _{1}-1)}{r}g_{44},\\ g_{66}&=\frac{(\lambda _{1}-1)}{r}g_{45},g_{67}=-(b_{10}\lambda _{1}g_{41}+a_{1}\tau _{1}g_{50}),\\ g_{68}&=-\lambda _{1}(b_{10}g_{42}+b_{11}g_{41})-a_{1}(g_{50}+\tau _{1}g_{51}),\\ g_{69}&=-\lambda _{1}(b_{10}g_{43}+b_{11}g_{42}+b_{12}g_{41})-a_{1}(g_{51}+\tau _{1}g_{52}),\\ g_{70}&=-\lambda _{1}(b_{11}g_{43}+b_{12}g_{42})-a_{1}g_{52},g_{71}=g_{59},\, \,\,g_{72}=g_{60},g_{73}=\lambda _{1}g_{61},\\ g_{74}&=-g_{62},g_{75}=-g_{63},g_{76}=-g_{64},g_{77}=-g_{65},\, g_{78}=-g_{66}. \end{aligned}$$

Appendix B

The following are the expressions for the various notations used in Eqs. (47)–(56):

$$\begin{aligned} l_{1}&=\frac{t^{2}}{6}+\frac{(a_{10}r)^{2}}{3},l_{2}=\frac{t^{2}}{2}+\frac{(a_{10}r)^{2}}{4}, l_{3}=\frac{t^{2}}{2}+\frac{(b_{10}r)^{2}}{4},\\ u_{11}&=\frac{f_{41}t}{a_{10}r},u_{12}=\frac{1}{a_{10}r}\left\{ \left( f_{42}+\frac{f_{43}t}{2}\right) +\alpha _{1}\left( \frac{f_{42}t}{2}+f_{42}\alpha _{1}l_{1}+2f_{43}l_{1}\right) \right\} ,\\ u_{13}&=\frac{f_{42}a_{11}r}{2}\left( 1+\alpha _{1}t\right) +f_{43}r\left( a_{11}t+\frac{a_{10}}{2}\right) , u_{14}=\frac{g_{41}t}{b_{10}r},\\ u_{15}&=\frac{(g_{42}-g_{41}\alpha _{2})t}{b_{10}r},u_{16}=\frac{g_{43}}{b_{10}r} (1+\frac{t}{2}\alpha _{2}),u_{17}=t\left( g_{44}+\frac{t}{2}g_{45}\right) ,\\ \phi _{11}&=f_{45}+t(f_{45}\alpha _{1}+f_{46})+l_{2}\alpha _{1}(f_{45}\alpha _{1}+2f_{46}),\\ \phi _{12}&=f_{45}\alpha _{1}+f_{46}+\frac{3}{4}t\alpha _{1}(f_{45}\alpha _{1}+2f_{46}),\\ \phi _{13}&=g_{46}+t(g_{46}\alpha _{2}+g_{47})+l_{3}\alpha _{2}(g_{46}\alpha _{2}+2g_{47}),\\ \phi _{14}&=g_{46}\alpha _{2}+g_{47}+\frac{3}{4}t\alpha _{2}(g_{46}\alpha _{2}+2g_{47}),\phi _{15}=g_{48}+g_{49}t,\\ \theta _{11}&=f_{50}+t(f_{50}\alpha _{1}+f_{51})+l_{2}\alpha _{1}(f_{45}\alpha _{1}+2f_{46}),\\ \theta _{12}&=f_{50}\alpha _{1}+f_{51}+\frac{3}{4}t\alpha _{1}(f_{50}\alpha _{1}+2f_{51}),\,\,\, \theta _{13}=g_{51}-\alpha _{2}g_{50},\\ \theta _{14}&=g_{52}(1+t\alpha _{2}+l_{3}\alpha _{2}^{2}),\theta _{15}=t\left( g_{53} +\frac{t}{2}g_{54}\right) ,\\ \sigma _{11}^{r}&=-f_{53}\alpha _{1}+\frac{f_{58}t}{a_{10}r^{2}},\\ \sigma _{12}^{r}&=f_{54}+t(f_{54}\alpha _{1}+f_{55})+\alpha _{1}(f_{54}\alpha _{1}+2f_{55})l_{2} -\frac{a_{10}}{2}(f_{59}\alpha _{1}+f_{60})-\frac{a_{10}t}{2}\alpha _{1}(f_{59}\alpha _{1}+2f_{60}),\\ \sigma _{13}^{r}&=f_{54}\alpha _{1}+f_{55}+\frac{3}{4}t\alpha _{1}(f_{54}\alpha _{1}+2f_{55}) -\frac{1}{a_{10}r^{2}}\left( f_{59}t+\frac{(f_{59}\alpha _{1}+f_{60})t}{2}+l_{1}\alpha _{1}(f_{59}\alpha _{1}+2f_{60})\right) ,\\ \sigma _{14}^{r}&=g_{56}-2\alpha _{2}g_{55},\sigma _{15}^{r}=\frac{g_{62}}{b_{10}r^{2}}, \sigma _{16}^{r}=\alpha _{2}^{2}g_{55}+g_{57}+\frac{t}{b_{10}r^{2}}(g_{63}-\alpha _{2}g_{62}),\\ \sigma _{17}^{r}&=g_{59}\delta (t)+g_{60}+t\left( g_{61}+\frac{g_{65}}{r}+\frac{g_{66}t}{2r}\right) , \sigma _{11}^{\varphi }=f_{62}\alpha _{1}+\frac{f_{67}t}{a_{10}r^{2}},\\ \sigma _{12}^{\varphi }&=f_{63}+t(f_{63}\alpha _{1}+f_{64})+\alpha _{1}(f_{63}\alpha _{1}+2f_{64})l_{2} -\frac{a_{10}}{2}(f_{63}\alpha _{1}+f_{64})-\frac{a_{10}t}{2}\alpha _{1}(f_{63}\alpha _{1}+2f_{64}),\\ \sigma _{13}^{\varphi }&=f_{63}\alpha _{1}+f_{64}+\frac{3}{4}t\alpha _{1}(f_{63}\alpha _{1}+2f_{64}) -\frac{1}{a_{10}r^{2}}\left( f_{68}t+\frac{(f_{68}\alpha _{1}+f_{69})t}{2}+l_{1}\alpha _{1}(f_{68}\alpha _{1}+2f_{69})\right) ,\\ \sigma _{14}^{\varphi }&=g_{68}-2\alpha _{2}g_{67},\sigma _{15}^{\varphi }=\frac{g_{74}}{b_{10}r^{2}}, \sigma _{16}^{\varphi }=\alpha _{2}^{2}g_{67}+g_{69}+\frac{t}{b_{10}r^{2}}(g_{75}-\alpha _{2}g_{74}),\\ \sigma _{17}^{\varphi }&=g_{71}\delta (t)+g_{72}+t\left( g_{73}+\frac{g_{77}}{r}+\frac{g_{78}t}{2r}\right) . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangid, K., Mukhopadhyay, S. Thermoelastic interactions on temperature-rate-dependent two-temperature thermoelasticity in an infinite medium subjected to a line heat source. Z. Angew. Math. Phys. 73, 196 (2022). https://doi.org/10.1007/s00033-022-01830-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-022-01830-9

Keywords

Mathematics Subject Classification

Navigation