Skip to main content
Log in

Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In the present paper we study a natural nonlinear generalization of Timoshenko beam model and show that it can describe the homogenized deformation energy of a 1D continuum with a simple microstructure. We prove the well posedness of the corresponding variational problem in the case of a generic end load, discuss some regularity issues and evaluate the critical load. Moreover, we generalize the model so as to include an additional rotational spring in the microstructure. Finally, some numerical simulations are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Euler, L.: Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici lattissimo sensu accepti (1744). chapter Additamentum 1, eulerarchive.org E065

  2. Bernoulli, D.: The 26th letter to Euler. In: Correspondence Mathématique et Physique, vol. 2. P. H. Fuss (1742)

  3. Bernoulli, J.: Quadratura curvae, e cujus evolutione describitur inflexae laminae curvatura. Die Werke von Jakob Bernoulli, pp. 223–227 (1692)

  4. Lagrange, J.L.: Mécanique analytique, vol. 1-2. Mallet-Bachelier, Paris (1744)

    Google Scholar 

  5. Mora, M. G., Müller, S.: A nonlinear model for inextensible rods as a low energy \(\Gamma \)-limit of three-dimensional nonlinear elasticity. In: Annales de l’IHP Analyse non linéaire, vol. 21, pp. 271–293 (2004)

  6. Pideri, C., Seppecher, P.: Asymptotics of a non-planar rod in non-linear elasticity. Asymptot. Anal. 48(1, 2), 33–54 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Eugster, S.R.: Geometric Continuum Mechanics and Induced Beam Theories, vol. 75. Springer, New York (2015)

    MATH  Google Scholar 

  8. Eugster, S., Glocker, C.: Determination of the transverse shear stress in an Euler–Bernoulli beam using non-admissible virtual displacements. PAMM 14(1), 187–188 (2014)

    Article  Google Scholar 

  9. Timoshenko, S.P.: On the correction factor for shear of the differential equation for transverse vibrations of prismatic bar. Philos. Mag. 6(41), 744 (1921)

    Article  Google Scholar 

  10. Plantema, F.J.: Sandwich construction; the bending and buckling of sandwich beams, plates, and shells. Wiley, London (1966)

  11. Turco, E., Barcz, K., Pawlikowski, M., Rizzi, N.L.: Non-standard coupled extensional and bending bias tests for planar pantographic lattices. Part I: numerical simulations. Zeitschrift für angewandte Mathematik und Physik 67(5), 122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Birsan, M., Altenbach, H., Sadowski, T., Eremeyev, V.A., Pietras, D.: Deformation analysis of functionally graded beams by the direct approach. Compos. Part B Eng. 43(3), 1315–1328 (2012)

    Article  Google Scholar 

  13. Eugster, S.R.: Augmented nonlinear beam theories. In: Geometric Continuum Mechanics and Induced Beam Theories, pp. 101–115. Springer, Berlin (2015)

  14. Piccardo, G., Ferrarotti, A., Luongo, A.: Nonlinear generalized beam theory for open thin-walled members. Math. Mech. Solids 22(10), 1907–1921 (2016). https://doi.org/10.1177/1081286516649990. 2017

    Article  MathSciNet  MATH  Google Scholar 

  15. Luongo, A., Zulli, D.: Mathematical Models of Beams and Cables. Wiley, New York (2013)

    Book  Google Scholar 

  16. Ruta, G.C., Varano, V., Pignataro, M., Rizzi, N.L.: A beam model for the flexural-torsional buckling of thin-walled members with some applications. Thin-Walled Struct. 46(7), 816–822 (2008)

    Article  Google Scholar 

  17. Hamdouni, A., Millet, O.: An asymptotic non-linear model for thin-walled rods with strongly curved open cross-section. Int. J. Nonlin. Mech. 41(3), 396–416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grillet, L., Hamdouni, A., Millet, O.: An asymptotic non-linear model for thin-walled rods. Comptes Rendus Mécanique 332(2), 123–128 (2004)

    Article  MATH  Google Scholar 

  19. Grillet, L., Hamdouni, A., Millet, O.: Justification of the kinematic assumptions for thin-walled rods with shallow profile. Comptes Rendus Mécanique 333(6), 493–498 (2005)

    Article  MATH  Google Scholar 

  20. Hamdouni, A., Millet, O.: An asymptotic linear thin-walled rod model coupling twist and bending. Int. Appl. Mech. 46(9), 1072–1092 (2011)

    Article  MathSciNet  Google Scholar 

  21. dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2016)

    Article  Google Scholar 

  22. Cosserat, E., Cosserat, F.: Théorie des corps déformables. Librairie Scientifique A. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  23. Forest, S.: Mechanics of Cosserat Media—An Introduction, pp. 1–20. Ecole des Mines de Paris, Paris (2005)

    Google Scholar 

  24. Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)

    Article  MATH  Google Scholar 

  25. Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Found. Micropolar Mech. Springer, New York (2012)

    Google Scholar 

  26. Riey, G., Tomassetti, G.: A variational model for linearly elastic micropolar plate-like bodies. J. Convex Anal. 15(4), 677–691 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Riey, G., Tomassetti, G.: Micropolar linearly elastic rods. Commun. Appl. Anal. 13(4), 647–658 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Kannan, R., Krueger, C.K.: Advanced Analysis: On the Real Line. Springer, New York (2012)

    MATH  Google Scholar 

  29. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (2015)

    MATH  Google Scholar 

  30. Cupini, G., Guidorzi, M., Marcelli, C.: Necessary conditions and non-existence results for autonomous nonconvex variational problems. J. Differ. Equ. 243(2), 329–348 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fonseca, I., Leoni, G.: Modern Methods in the Calculus of Variations: \(L^p\) Spaces. Springer, New York (2007)

    MATH  Google Scholar 

  32. Della Corte, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Equilibria of a clamped Euler beam (Elastica) with distributed load: large deformations. M3AS (2017), (2016) https://doi.org/10.1142/S0218202517500221

  33. Pipkin, A.C.: Some developments in the theory of inextensible networks. Q. Appl. Math. 38(3), 343–355 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Steigmann, D.J., Pipkin, A.C.: Equilibrium of elastic nets. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 335(1639), 419–454 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  35. dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. In: Proceedings of the Royal Society of London A, vol. 472, no. 2185, p. 20150790. The Royal Society (2016)

  36. Ferretti, M., D’Annibale, F., Luongo, A.: Flexural-torsional flutter and buckling of braced foil beams under a follower force. Math. Prob. Eng. (2017). https://doi.org/10.1155/2017/2691963

  37. Luongo, A., D’Annibale, F.: Double zero bifurcation of non-linear viscoelastic beams under conservative and non-conservative loads. Int. J. Nonlin. Mech. 55, 128–139 (2013)

    Article  Google Scholar 

  38. Luongo, A., D’Annibale, F.: Bifurcation analysis of damped visco-elastic planar beams under simultaneous gravitational and follower forces. Int. J. Modern Phys. B 26(25), 1246015 (2012)

    Article  Google Scholar 

  39. Di Egidio, A., Luongo, A., Paolone, A.: Linear and nonlinear interactions between static and dynamic bifurcations of damped planar beams. Int. J. Nonlin. Mech. 42(1), 88–98 (2007)

    Article  MATH  Google Scholar 

  40. Goriely, A., Vandiver, R., Destrade, M.: Nonlinear euler buckling. In: Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, vol. 464, no. 2099, pp. 3003–3019. The Royal Society (2008)

  41. Ball, J.M., Mizel, V.J.: One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. In: Analysis and Thermomechanics, pp. 285-348. Springer, Berlin, Heidelberg (1987)

  42. Fertis, D.G.: Nonlinear Structural Engineering. Springer, Berlin, Heidelberg (2006)

    MATH  Google Scholar 

  43. Lawrie, I.D.: Phase transitions. Contemp. Phys. 28(6), 599–601 (1987)

    Article  Google Scholar 

  44. De Masi, A., Presutti, E., Tsagkarogiannis, D.: Fourier law, phase transitions and the stationary Stefan problem. Arch. Ration. Mech. Anal. 201(2), 681–725 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. McBride, A.T., Javili, A., Steinmann, P., Bargmann, S.: Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion. J. Mech. Phys. Solids 59(10), 2116–2133 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. Eremeyev, V.A., Pietraszkiewicz, W.: The nonlinear theory of elastic shells with phase transitions. J. Elast. 74(1), 67–86 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Steigmann, D.J.: Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J. Elast. 111(1), 91–107 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Steigmann, D.J.: A concise derivation of membrane theory from three-dimensional nonlinear elasticity. J. Elast. 97(1), 97–101 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Forest, S., Sievert, R.: Nonlinear microstrain theories. Int. J. Solids Struct. 43(24), 7224–7245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ladevèze, P.: Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation. Springer, New York (2012)

    Google Scholar 

  51. Rivlin, R.S.: Networks of inextensible cords. In: Collected Papers of RS Rivlin, pp. 566–579. Springer, New York (1997)

  52. Pipkin, A.C.: Plane traction problems for inextensible networks. Q. J. Mech. Appl. Math. 34(4), 415–429 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  53. Alibert, J.J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Scerrato, D., Giorgio, I., Rizzi, N.L.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Zeitschrift für angewandte Mathematik und Physik 67(3), 1–19 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  55. Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)

    Article  Google Scholar 

  57. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Wave dynamics and composite mechanics for microstructured materials and metamaterials, pp. 239–258. Springer, Singapore (2017)

  59. Turco, E., Golaszewski, M., Giorgio, I., Placidi, L.: Can a Hencky-type model predict the mechanical behaviour of pantographic lattices? In: Mathematical Modelling in Solid Mechanics, pp. 285–311. Springer, Singapore (2017)

  60. Baker, G.L., Blackburn, J.A.: The Pendulum: A Case Study in Physics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  61. De Masi, A., Dirr, N., Presutti, E.: Interface instability under forced displacements. Ann. Henri Poincaré 7(3), 471–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Battista.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battista, A., Della Corte, A., dell’Isola, F. et al. Large deformations of 1D microstructured systems modeled as generalized Timoshenko beams. Z. Angew. Math. Phys. 69, 52 (2018). https://doi.org/10.1007/s00033-018-0946-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0946-5

Keywords

Mathematics Subject Classification

Navigation