Skip to main content
Log in

Asymptotic stability of stationary solutions for Hall magnetohydrodynamic equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we consider the large time behavior of the compressible Hall magnetohydrodynamic equations with Coulomb force in \(\mathbb {R}^3\) near the non-constant equilibrium state. We derive the global existence provided that the initial perturbation is sufficiently small. Moreover, under the further assumption that the doping profile is of small variation, we obtain the convergence rates by combining the linear \(L^p\)\(L^q\) decay estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acheritogaray, M., Degond, P., Frouvelle, A., Liu, J.G.: Kinetic formulation and global existence for the Hall magnetohydrodynamics system. Kinet. Relat. Models 4, 901–918 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chae, D., Lee, J.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics. J. Differ. Equ. 256(11), 3835–3858 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Q., Tan, Z.: Global existence and convergence rates of smooth solutions for the compressible magnetohydroynamics equations. Nonlinear Anal. 72, 4438–4451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chae, D., Wan, R.H., Wu, J.H.: Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion. J. Math. Fluid Mech. 17(4), 627–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chae, D., Schonbek, M.: On the temporal decay for the Hall-magnetohydrodynamic equations. J. Differ. Equ. 255(11), 3971–3982 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae, D., Degond, P., Liu, J.G.: Well-posedness for Hall-magnetohydrodynamics. Ann. Inst. H. Poincaré Anal. Non Linéaire 31(3), 555–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, J.S., Alsaedi, A., Hayat, T., Nakamura, G., Zhou, Y.: On strong solutions to the compressible Hall-magnetohydrodynamic system. Nonlinear Anal. Real World Appl. 22, 423–434 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fan, J.S., Alsaedi, A., Fukumoto, Y., Hayat, T., Zhou, Y.: A regularity criterion for the density dependent Hall magnetohydrodynamics. Z. Anal. Anwend. 34(3), 277–284 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fan, J.S., Li, F.C., Nakamura, G.: Regularity criteria for the incompressible Hall magnetohydrodynamic equations. Nonlinear Anal. 109, 173–179 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, J.S., Ozawa, T.: Regularity criteria for the density dependent Hall magnetohydrodynamics. Appl. Math. Lett. 36, 14–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fei, M.G., Xiang, Z.Y.: On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics with horizontal dissipation. J. Math. Phys. 56(5), 901–918 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fan, J.S., Yu, W.H.: Global variational solutions to the compressible magnetohydrodynamic equations. Nonlinear Anal. 69, 3637–3660 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan, J.S., Yu, W.H.: Strong solution to the compressible magnetohydrodynamic equations with vacuum. Nonlinear Anal. Real World Appl. 10, 392–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hao, C.C., Li, H.L.: Global existence for compressible Navier–Stokes–Poisson equations in three and higher dimensions. J. Differ. Equ. 246, 4791–4812 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hu, X.P., Wang, D.H.: Global solutions to the three-dimensional full compressible magnetohydrodynamic flows. Commun. Math. Phys. 283, 255–284 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, X.P., Wang, D.H.: Low Mach number limit of viscous compressible magnetohydrodynamic flows. SIAM J. Math. Anal. 41(3), 1272–1294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hu, X.P., Wang, D.H.: Global existence and large-time behavior of solutions to the three-dimensional equations of compressible magnetohydrodynamic flows. Arch. Ration. Mech. Anal. 197, 203–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ju, N.: Existence and uniqueness of the solution to the dissipative \(2D\) quasi-geostrophic equations in the Sobolev space. Commun. Math. Phys. 251, 365–376 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jiang, S., Ju, Q.C., Li, F.C.: Incompressible limit of the compressible magnetohydrodynamic equations with periodic boundary conditions. Commun. Math. Phys. 297, 371–400 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, S., Ju, Q.C., Li, F.C., Xin, Z.P.: Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data. Adv. Math. 259, 384–420 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ju, Q.C., Li, F.C., Li, Y.: Asymptotic limits of the full compressible magnetohydrodynamic equations. SIAM J. Math. Anal. 45(5), 2597–2624 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58, 181–205 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kobayashi, T., Suzuki, T.: Weak solutions to the Navier–Stokes–Poisson equation. Adv. Math. Sci. Appl. 18, 141–168 (2008)

    MathSciNet  MATH  Google Scholar 

  24. Lei, Z.: On axially symmetric incompressible magnetohydrodynamics in three dimensions. J. Differ. Equ. 259(7), 3202–3215 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, H.L., Matsumura, A., Zhang, G.J.: Optimal decay rate of the compressible Navier–Stokes–Poisson system in \(\mathbb{R}^3\). Arch. Ration. Mech. Anal. 196, 681–713 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, F.C., Yu, H.J.: Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc. R. Soc. Edinb. Sect. A 141(A), 109–126 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, H.L., Xu, X.Y., Zhang, J.W.: Global classical solutions to \(3D\) compressible magnetohydrodynamic equations with large oscillation and vacuum. SIAM J. Math. Anal. 45, 1356–1387 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nirenberg, L.: On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa 13, 115–162 (1959)

    MathSciNet  MATH  Google Scholar 

  30. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  31. Tan, Z., Tong, L.L., Wang, Y.: Large time behavior of the compressible magnetohydrodynamic equations with Coulomb force. J. Math. Anal. Appl. 427(2), 600–617 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tan, Z., Wang, Y.J.: Global existence and large-time behavior of weak solutions to the compressible magnetohydrodynamic equations with Coulomb force. Nonlinear Anal. 71, 5866–5884 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tan, Z., Wu, G.C.: Global existence for the non-isentropic compressible Navier–Stokes–Poisson system in three and higher dimensions. Nonlinear Anal. Real World Appl. 13, 650–664 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tan, Z., Wang, H.Q.: Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal. Real World Appl. 14, 188–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tan, Zhong, Wang, Y.J., Wang, Y.: Stability of steady states of the Navier–Stokes–Poisson equations with non-flat doping profile. SIAM J. Math. Anal 47(1), 179–209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tan, Z., Wang, Y., Zhang, X.: Large time behavior of solutions to the non-isentropic compressible Navier–Stokes–Poisson system in \(\mathbb{R}^3\). Kinet. Relat. Models 5, 615–638 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Umeda, T., Kawashima, S., Shizuta, Y.: On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics. Jpn. J. Appl. Math. 1, 435–457 (1984)

    Article  MATH  Google Scholar 

  38. Vol’pert, A.I., Hudjaev, S.I.: On the Cauchy problem for composite systems of nonlinear equations. Mat. Sb. 16(4), 504–528 (1972)

    MathSciNet  Google Scholar 

  39. Wang, Y.J.: Decay of the Navier–Stokes–Poisson equations. J. Differ. Equ. 253, 273–297 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wan, R.H., Zhou, Y.: On global existence, energy decay and blow-up criteria for the Hall-MHD system. J. Differ. Equ. 259(11), 5982–6008 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, G.J., Li, H.L., Zhu, C.J.: Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in \(\mathbb{R}^3\). J. Differ. Equ. 250, 866–891 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Tong.

Additional information

This research was supported by the National Natural Science Foundation of China (Grant Nos. 11271305, 11531010) and the Fundamental Research Funds for Xiamen University (No. 201412G004).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Tong, L. Asymptotic stability of stationary solutions for Hall magnetohydrodynamic equations. Z. Angew. Math. Phys. 69, 51 (2018). https://doi.org/10.1007/s00033-018-0944-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-0944-7

Keywords

Mathematics Subject Classification

Navigation