Skip to main content
Log in

Variational analysis of anisotropic Schrödinger equations without Ambrosetti–Rabinowitz-type condition

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This article is concerned with the qualitative analysis of weak solutions to nonlinear stationary Schrödinger-type equations of the form

$$\begin{aligned} \left\{ \begin{array}{ll} - \displaystyle \sum _{i=1}^N\partial _{x_i} a_i(x,\partial _{x_i}u)+b(x)|u|^{P^+_+-2}u =\lambda f(x,u) &{}\quad \text {in } \Omega ,\\ u=0 &{}\quad \text {on } \partial \Omega , \end{array}\right. \end{aligned}$$

without the Ambrosetti–Rabinowitz growth condition. Our arguments rely on the existence of a Cerami sequence by using a variant of the mountain-pass theorem due to Schechter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Prinari, B., Trubatch, A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Adams, R.A., Fournier, J.F.: Sobolev Spaces, Second edition, Pure and Applied Mathematics (Amsterdam), vol. 140. Elsevier, Amsterdam (2003)

    Google Scholar 

  3. Afrouzi, G.A., Mirzapour, M., Rădulescu, V.D.: Qualitative analysis of solutions for a class of anisotropic elliptic equations with variable exponent. Proc. Edinb. Math. Soc. 59(3), 541–557 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Afrouzi, G.A., Mirzapour, M., Rădulescu, V.D.: Qualitative properties of anisotropic elliptic Schrödinger equations. Adv. Nonlinear Stud. 14, 747–765 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Afrouzi, G.A., Mirzapour, M., Rădulescu, V.D.: The variational analysis of a nonlinear anisotropic problem with no-flux boundary condition. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 109, 581–595 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Afrouzi, G.A., Mirzapour, M.: Existence and multiplicity of solutions for nonlocal \( \overrightarrow{p}(x) \)-Laplacian problem. Taiwan. J. Math. 18, 219–236 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bahrouni, A., Ounaies, H., Rădulescu, V.D.: Infinitely many solutions for a class of sublinear Schrödinger equations with indefinite potentials. Proc. R. Soc. Edinb. Sect. A 145, 445–465 (2015)

    Article  MATH  Google Scholar 

  8. Boureanu, M.M., Rădulescu, V.D.: Anisotropic Neumann problems in Sobolev spaces with variable exponent. Nonlinear Anal. 75, 4471–4482 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cazenave, T.: Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, vol. 10. American Mathematical Society, Providence (2003)

    Google Scholar 

  10. Chung, N.T., Toan, H.Q.: On a class of anisotropic elliptic equations without Ambrosetti–Rabinowitz type conditions. Nonlinear Anal. Real World Appl. 16, 132–145 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Edmunds, D.E., Rákosník, J.: Sobolev embedding with variable exponent. Studia Math. 143, 267–293 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fu, Y., Shan, Y.: On the removability of isolated singular points for elliptic equations involving variable exponent. Adv. Nonlinear Anal. 5(2), 121–132 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Gamow, G.: Zur Quantentheorie des Atomkernes. Zeitschrift für Physik 51(204), 204–212 (1928)

    Article  MATH  Google Scholar 

  14. Goubet, O., Hamraoui, E.: Blow-up of solutions to cubic nonlinear Schrödinger equations with defect: the radial case. Adv. Nonlinear Anal. 6(2), 183–197 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Harjulehto, P.: Variable exponent Sobolev space with zero boundary value. Math. Bohem. 132, 125–136 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Holzleitner, M., Kostenko, A., Teschl, G.: Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions. Opusc. Math. 36(6), 769–786 (2016)

    Article  MATH  Google Scholar 

  17. Kefi, K., Rădulescu, V.D.: On a \(p(x)\)-biharmonic problem with singular weights. Z. Angew. Math. Phys. 68(4), 80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kone, B., Ouaro, S., Traore, S.: Weak solutions for anisotropic nonlinear elliptic equations with variable exponents. Electron. J. Differ. Equ. 2009, 1–11 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Kováčik, O., Rákosník, J.: On the spaces \(L^{p(x)}(\Omega )\) and \(W^{1, p(x)}(\Omega )\). Czechoslov. Math. J. 41, 592–618 (1991)

    MATH  Google Scholar 

  20. Mihăilescu, M., Pucci, P., Rădulescu, V.D.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mihăilescu, M., Rădulescu, V.D., Repovš, D.D.: On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting. J. Math. Pures Appl. 93, 132–148 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miyagaki, O., Moreira, S., Pucci, P.: Multiplicity of nonnegative solutions for quasilinear Schrödinger equations. J. Math. Anal. Appl. 434(1), 939–955 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pucci, P., Rădulescu, V.D.: The impact of the mountain pass theory in nonlinear analysis: a mathematical survey. Boll. Unione Mat. Ital. (9) 3(3), 543–582 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Rădulescu, V.D.: Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations: Monotonicity, Analytic, and Variational Methods, Contemporary Mathematics and Its Applications, vol. 6. Hindawi Publishing Corporation, New York (2008)

    Book  Google Scholar 

  25. Rădulescu, V.D.: Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121, 336–369 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rădulescu, V.D., Repovš, D.D.: Combined effects in nonlinear problems arising in the study of anisotropic continuous media. Nonlinear Anal. 75(3), 1524–1530 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rădulescu, V.D., Repovš, D.D.: Partial Differential Equations with Variable Exponents. Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2015)

    Book  Google Scholar 

  28. Repovš, D.D.: Stationary waves of Schrödinger-type equations with variable exponent. Anal. Appl. 13(6), 645–661 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000)

    MATH  Google Scholar 

  30. Schechter, M.: A variation of the mountain pass lemma and application. J. Lond. Math. Soc. 44(2), 491–502 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049–1070 (1926)

    Article  MATH  Google Scholar 

  32. Sulem, C., Sulem, P.L.: The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    MATH  Google Scholar 

  33. Zhikov, V.V.: On Lavrentiev’s phenomenon. Russ. J. Math. Phys. 3, 249–269 (1995)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank a knowledgeable anonymous reviewer for very useful comments and remarks, which considerably improved the preliminary version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenţiu D. Rădulescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afrouzi, G.A., Mirzapour, M. & Rădulescu, V.D. Variational analysis of anisotropic Schrödinger equations without Ambrosetti–Rabinowitz-type condition. Z. Angew. Math. Phys. 69, 9 (2018). https://doi.org/10.1007/s00033-017-0900-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-017-0900-y

Keywords

Mathematics Subject Classification

Navigation