Skip to main content
Log in

Variational Methods for Tomographic Reconstruction with Few Views

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We deal with a severe ill posed problem, namely the reconstruction process of an image during tomography acquisition with (very) few views. We present different methods that we have been investigated during the past decade. They are based on variational analysis. This is a survey paper and we refer to the quoted papers for more details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Abraham, R. Abraham and M. Bergounioux, An Active Curve Approach for Tomographic Reconstruction of Binary Radially Symmetric Objects, Numerical Mathematics and Advanced Applications, Kunisch K., Of G., Steinbac O. (Eds.), pp. 663–670 (2008).

  2. I. Abraham, R. Abraham, M. Bergounioux, Avariational method for tomographic reconstruction with few views, http://hal.archives-ouvertes.fr/hal-00697218, April 2012.

  3. Abraham I., Abraham R., Bergounioux M., Carlier G.: Tomographic reconstruction from a few views: a multi-marginal optimal transport approach. Applied Mathematics and Optimization, 75(1), 55–73 (2017)

    Article  MathSciNet  Google Scholar 

  4. Abraham R., Bergounioux M., Trélat E.: A penalization approach for tomographic reconstruction of binary radially symmetric objects. Applied Mathematics and Optimization, 58(3), 345–371 (2008)

    Article  MathSciNet  Google Scholar 

  5. Agueh M., Carlier G.: Barycenters in the Wasserstein space. SIAM J. Math. An., 43(2), 904–924 (2011)

    Article  MathSciNet  Google Scholar 

  6. Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford mathematical monographs, Oxford University Press (2000)

  7. A. Ammar and A. Karoui, Stable inversion of the Abel integral equation of the first kind by means of orthogonal polynomials, Inverse Problems, 26, 105005, 28 pp. (2010).

    Article  MathSciNet  Google Scholar 

  8. Ambartsoumian G., Kuchment P.: A range description for the planar circular Radon transform. SIAM J. Math. Anal. 38(2), 681–692 (2006)

    Article  MathSciNet  Google Scholar 

  9. H. Attouch, G. Buttazzo, and G. Michaille, Variational analysis in Sobolev and BV spaces, MPS/SIAM Series on Optimization, Vol. 6, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2006).

  10. Bates R.H.T., Garden K.L., Peters T.M.: Overview of computerized tomography with emphasis on future developments Proc IEEE 71(3), 356–297 (1983)

    Article  Google Scholar 

  11. Benamou J.D., Brenier Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik, 84(3), 375–393 (2000)

    Article  MathSciNet  Google Scholar 

  12. Benamou J.D., Carlier G., Cuturi M., Nenna L., Peyré G.: Iterative Bregman Projections for Regularized Transportation Problems. SIAM Journal on Scientific Computing, 37(2), A1111–A1138 (2015)

    Article  MathSciNet  Google Scholar 

  13. Bergounioux M., Haddou M.: A new relaxation method for a discrete image restoration problem. Journal of Convex Analysis, 17(3), 861–883 (2010)

    MathSciNet  MATH  Google Scholar 

  14. Bergounioux M., Srour A.: A relaxation approach for smooth tomographic reconstruction of binary axially symmetric objects. Pacific Journal of Optimization, 5(1), 39–51 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Bergounioux M., Trélat E.: A variational method using fractional Sobolev spaces for tomographic reconstruction of blurred and noised binary images. Journal of Functional Analysis, 259, 2296–2332 (2010)

    Article  MathSciNet  Google Scholar 

  16. M. Bergounioux, E. Le Pennec and E. Trélat, Fractional-order variational numerical methods for tomographic reconstruction of binary images, preprint, https://hal.archives-ouvertes.fr/hal-01794224v1

  17. J.P. Bruandet, F. Peyrin, J.M. Dinten and M. Barlaud, 3D tomographic reconstruction of binary images from cone-beam projections: a fast level-set approach, IEEE International Symposium on Biomedical Imaging, 677–680 (2002).

  18. Caffarelli L., Silvestre L.: An extension problem related to the fractional Laplacian. Comm.Partial Differential Equations 32(7–9), 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  19. Carlier G., Ekeland I.: Matching for teams. Econ. Theory, 42(2), 397–418 (2010)

    Article  MathSciNet  Google Scholar 

  20. Casas E., Kunisch K., Pola C.: Regularization by Functions of Bounded Variation and Applications to Image Enhancement. Applied Mathematics and Optimization 40, 229–257 (1999)

    Article  MathSciNet  Google Scholar 

  21. Chambolle A.: An algorithm for total variation minimization and applications. Journal of Mathematical Imaging and Vision 20, (1–2), 89–97 (2004)

    MathSciNet  MATH  Google Scholar 

  22. J.-M., Dinten Tomographie à partir d’un nombre limité de projections : régularisation par champs markovien, PHD thesis, Université Paris-Sud (1990).

  23. Dusaussoy N.J.: Image reconstruction from projections, SPIE’s international symposium on optics. imaging and instrumentation, San Diego (1994)

    Google Scholar 

  24. Gottlieb D., Shu C.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39(4), 644–668 (1997)

    Article  MathSciNet  Google Scholar 

  25. Greenblatt M.: A method for proving L p boundedness of singular Radon transforms in codimension one for \({1 < p < \infty}\)Duke Math. J. 108(2), 363–393 (2001)

    Article  MathSciNet  Google Scholar 

  26. Helgason S.: The Radon Transform, Progress in Mathematics, 5. Birkhäuser, Basel (1980)

    Book  Google Scholar 

  27. Helgason S.: Ranges of Radon transforms, Computed tomography (Cincinnati, Ohio, Proc. Sympos. Appl. Math. 27, 63–70 (1982) Amer. Math. Soc., Providence, R.I. (1982).

    Article  Google Scholar 

  28. Hertle A.: On the range of the Radon transform and its dual. Math.Ann. 267(1), 91–99 (1984)

    Article  MathSciNet  Google Scholar 

  29. K. Hanson, Tomographic reconstruction of axially symmetric objects from a single radiograph, High Speed Photography, 491 (1984).

  30. G. Herman, Image reconstruction from projections: the fundamentals of computerized tomography, Academic Press (1980).

  31. Hofmann B ., Kaltenbacher B., Pöschl C., Scherzer O.: A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Problems 23, 987–1010 (2007)

    Article  MathSciNet  Google Scholar 

  32. Kak A.C., Slaney M.: Principles of Computerized Tomographic Imaging,IEEE Press, New York (1988)

    MATH  Google Scholar 

  33. S. Krimme, J. Baumann, Z. Kiss, A. Kuba, A. Nagy and J. Stephan, Discrete tomography for reconstruction from limited view angles in non-destructive testing, Electronic Notes in Discrete Mathematics, Proceedings of the Workshop on Discrete Tomography and its Applications,20, 455–474 (2005).

  34. Magnor M., Kindlmann G., Hansen C., Duric N.: Reconstruction and visualization of planetary nebulae. IEEE Trans. Visualization Computer Graphics 11(5), 485–496 (2005)

    Article  Google Scholar 

  35. Neelamani R., Choi H., Baraniuk R.: ForWaRD: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process., 52(2), 418–433 (2004)

    Article  MathSciNet  Google Scholar 

  36. Natterer F.: Exploiting the ranges of Radon transforms in tomography, Numerical treatment of inverse problems in differential and integral equations, Progr. Sci. Comput., 2. Birkhäuser., Boston, MA (1998) 290–303

    Google Scholar 

  37. Petrushev P., Xu Y.: Localized polynomial frames on the interval with Jacobi weights. J. Fourier Anal. Appl. 11(5), 557–575 (2005)

    Article  MathSciNet  Google Scholar 

  38. Sethian J.A.: Theory, algorithms and applications of level set methods for propagating interfaces. Acta Numerica, 5, 309–395 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maïtine Bergounioux.

Additional information

Lecture delivered at the Seminario Matematico e Fisico di Milano on January 15, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergounioux, M., Abraham, I., Abraham, R. et al. Variational Methods for Tomographic Reconstruction with Few Views. Milan J. Math. 86, 157–200 (2018). https://doi.org/10.1007/s00032-018-0285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-018-0285-1

Mathematics Subject Classification (2010)

Keywords

Navigation