Skip to main content
Log in

ON THE SINGULARITIES OF MISHCHENKO–FOMENKO SYSTEMS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

To each complex semisimple Lie algebra \( \mathfrak{g} \) and regular element a\( \mathfrak{g} \)reg, one associates a Mishchenko–Fomenko subalgebra \( \mathcal{F} \)a ⊆ ℂ[\( \mathfrak{g} \)]. This subalgebra amounts to a completely integrable system on the Poisson variety \( \mathfrak{g} \), and as such has a bifurcation diagram Σa ⊆ Spec(\( \mathcal{F} \)a). We prove that Σa has codimension one in Spec(\( \mathcal{F} \)a) if a\( \mathfrak{g} \)reg is not nilpotent, and that it has codimension one or two if a\( \mathfrak{g} \)reg is nilpotent. In the nilpotent case, we show each of the possible codimensions to be achievable. Our results significantly sharpen existing estimates of the codimension of Σa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Abe, P. Crooks, Hessenberg varieties, Slodowy slices, and integrable systems, Math Z. 291 (2019), no. 3-4, 1093–1132.

  2. Bolsinov, A.: Commutative families of functions related to consistent Poisson brackets. Acta Appl. Math. 24(3), 253–274 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. А. Болсинов, Согласованные скобки Пуассона на алгебрах Ли и полнота семейств функций в инволюции, Изв. АН СССР. Сер. матем 55 (1991), вып. 1, 68–92. Engl. transl.: A. Bolsinov, Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution, Math. USSR-Izv. 38 (1992), no.1, 69–90.

  4. A. Bolsinov, Some remarks about Mishchenko–Fomenko subalgebras, J. Algebra 483 (2017), 58–70.

  5. Bolsinov, A., Oshemkov, A.A.: Bi-Hamiltonian structures and singularities of integrable systems. Regul. Chaotic Dyn. 14(4-5), 431–454 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borho, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54(1), 61–104 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ю. А. Браилов, Геометрия сдвигов инвариантов на полупростых алгебрах Ли, Матем. сб. 194 (2003), ном. 11, 3–16. Engl. transl.: Yu. A. Brailov, Geometry of translations of invariants on semisimple Lie algebras, Sbornik: Math. 194 (2003), no. 11, 1585–1598.

  8. Y. A. Brailov, A. T. Fomenko, Lie groups and integrable Hamiltonian systems, in: Recent Advances in Lie Theory (Vigo, 2000), Res. Exp. Math., Vol. 25, Heldermann, Lemgo, 2002, pp. 45–76.

  9. A. Broer, Lectures on decomposition classes, in: Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 39–83.

  10. Crooks, P., Rayan, S.: Abstract integrable systems on hyperkähler manifolds arising from Slodowy slices. Math. Res. Lett. 26(9), 9–33 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Crooks, M. Röser, On the fibres of Mishchenko–Fomenko systems, Doc. Math. 25 (2020), 1195–1239.

  12. Izosimov, A.: The derived algebra of a stabilizer, families of coadjoint orbits, and sheets. J. Lie Theory. 24(3), 705–714 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Izosimov, A.: Algebraic geometry and stability for integrable systems. Phys. D. 291, 74–82 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. А. Ю. Коняев, Бифуркационная диаграмма и дискриминант интегрируемых систем типа твердого тела на алгебрах Ли \( \mathfrak{so} \)(2n + 1), \( \mathfrak{sp} \)(2n) и \( \mathfrak{sl} \)(n), Докл. Акад. Наук. Матем. 421 (2008), ном. 1, 18–20. Engl. transl.: A. Y. Konyaev, The bifurcation diagram and discriminant of integrable systems of rigid body type on the Lie algebras \( \mathfrak{so} \)(2n + 1), \( \mathfrak{sp} \)(2n), and \( \mathfrak{sl} \)(n), Dokl. Math. 78 (2008), no. 1, 488–489.

  15. А. Ю. Коняев, Бифуркационная диаграмма и дискриминант спектральной кривой интегрируемых систем на алгебрах Ли, Матем. сб. 201 (2010), ном. 9, 27–60. Engl. transl.: A. Yu. Konyaev, Bifurcation diagram and the discriminant of a spectral curve of integrable systems on Lie algebras, Sbornik: Math. 201 (2010), no. 9, 1273–1305.

  16. Kostant, B.: Lie group representations on polynomial rings. Amer. J. Math. 85, 327–404 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  17. С. В. Манаков, Замечание об интегрировании уравнений Эйлера динамики n-мерного твёрдого тела, Функц. анализ и его прил. 10 (1976), вып. 4, 93–94. Engl. transl.: S. V. Manakov, Note on the integration of Euler’s equations of the dynamics of an n-dimensional rigid body, Funct. Anal. Appl. 10 (1976), no. 4, 328–329.

  18. А. С. Мищенко, А. Т. Фоменко, Уравнения Эйлера на конечномерных группах Ли, Изв. АН СССР. Сер. матем. 42 (1978), вып. 2, 396–415. Engl. transl.: A. S. Miščenko, A. T. Fomenko, Euler equations on finite-dimensional Lie groups, Math. USSR-Izv. 12 (1978), no. 2, 371–389.

  19. A. Molev, O. Yakimova, Quantisation and nilpotent limits of Mishchenko–Fomenko subalgebras, Represent. Theory 23 (2019), 350–378.

  20. A. Moreau, A remark on Mishchenko–Fomenko algebras and regular sequences, Selecta Math. (N.S.) 24 (2018), no. 3, 2651–2657.

  21. Panyushev, D.I., Yakmiova, O.: The argument shift method and maximal commutative subalgebras of Poisson algebras. Math. Res. Lett. 15(2), 239–249 (2008)

    Article  MathSciNet  Google Scholar 

  22. Panyushev, D.I., Yakmiova, O.: Poisson-commutative subalgebras and complete integrability on non-regular coadjoint orbits and flag varieties. Math. Z. 295(1-2), 101–127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Popov, V.L.: Irregular and singular loci of commuting varieties. Transform. Groups. 13(3-4), 819–837 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. R. W. Richardson, Derivatives of invariant polynomials on a semisimple Lie algebra, in: Miniconference on Harmonic Analysis and Operator Algebras (Canberra, 1987), Proc. Centre Math. Anal. Austral. Nat. Univ., Vol. 15, Austral. Nat. Univ., Canberra, 1987, pp. 228–241.

  25. P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

  26. Varadarajan, V.S.: On the ring of invariant polynomials on a semisimple Lie algebra. Amer. J. Math. 90, 308–317 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  27. Э. Б. Винберг, О некоторых коммутативных подалгебрах универсальной обёртывающей алгебры, Изв. АН СССР. Сер. матем. 54 (1990), вып. 1, 3–25. Engl. transl.: E. B. Vinberg, On certain commutative subalgebras of a universal enveloping algebra, Math. USSR-Izv. 36 (1991), no. 1, 1–22.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PETER CROOKS.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CROOKS, P., RÖSER, M. ON THE SINGULARITIES OF MISHCHENKO–FOMENKO SYSTEMS. Transformation Groups 28, 1477–1494 (2023). https://doi.org/10.1007/s00031-022-09718-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-022-09718-8

Navigation