Skip to main content
Log in

Asymptotics of Muttalib–Borodin determinants with Fisher–Hartwig singularities

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Muttalib–Borodin determinants are generalizations of Hankel determinants and depend on a parameter \(\theta >0\). In this paper, we obtain large n asymptotics for \(n \times n\) Muttalib–Borodin determinants whose weight possesses an arbitrary number of Fisher–Hartwig singularities. As a corollary, we obtain asymptotics for the expectation and variance of the real and imaginary parts of the logarithm of the underlying characteristic polynomial, several central limit theorems, and some global bulk rigidity upper bounds. Our results are valid for all \(\theta > 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See [28, Theorem 1.1] for a formula valid only for \(\theta \in {\mathbb {Q}}\). For \(\theta \notin {\mathbb {Q}}\), there is simply no Christoffel-Darboux formula available in the literature.

  2. Simultaneously and independently to this work, Wang and Zhang in [62] also performed an asymptotic analysis of Y. Their situation is different from ours: they consider the case \(a=0\), \(\theta \) integer, and no FH singularities.

  3. The restriction \(\text {Re}\,\beta _{j} \in (\frac{-1}{4},\frac{1}{4})\) appearing in Theorem 1.6 will be important in Sect. 6.

  4. Thus \(\gamma \cap \{z:\text {Im}\,z >0\}\) and \(\gamma _{1}\) have opposite orientations, while \(\gamma \cap \{z:\text {Im}\,z <0\}\) and \(\gamma _{2}\) have the same orientation.

References

  1. Arguin, L.-P., Belius, D., Bourgade, P.: Maximum of the characteristic polynomial of random unitary matrices. Commun. Math. Phys. 349, 703–751 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basor, E.: Asymptotic formulas for Toeplitz determinants. Trans. Am. Math. Soc. 239, 33–65 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Basor, E.: A localization theorem for Toeplitz determinants. Indiana Univ. Math. J. 28, 975–983 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berestycki, N., Webb, C., Wong, M.D.: Random hermitian matrices and gaussian multiplicative chaos. Probab. Theory Relat. Fields 172, 103–189 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Betea, D., Occelli, A.: Discrete and continuous Muttalib–Borodin processes I: the hard edge, arXiv:2010.15529

  6. Bloom, T., Levenberg, N., Totik, V., Wielonsky, F.: Modified logarithmic potential theory and applications. Int. Math. Res. Not. IMRN 2017, 1116–1154 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Bogatskiy, A., Claeys, T., Its, A.: Hankel determinant and orthogonal polynomials for a Gaussian weight with a discontinuity at the edge. Commun. Math. Phys. 347, 127–162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borodin, A.: Biorthogonal ensembles. Nucl. Phys. B 536, 704–732 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borot, G., Guionnet, A., Kozlowski, K.K.: Large-\(N\) asymptotic expansion for mean field models with Coulomb gas interaction. Int. Math. Res. Not. IMRN 2015, 10451–10524 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Böttcher, A., Silbermann, B.: Toeplitz operators and determinants generated by symbols with one Fisher–Hartwig singularity. Math. Nachr. 127, 95–123 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgade, P., Mody, K., Pain, M.: Optimal local law and central limit theorem for \(\beta \)-ensembles. arXiv:2103.06841

  12. Breuer, J., Duits, M.: Central limit theorems for biorthogonal ensembles and asymptotics of recurrence coefficients. J. Am. Math. Soc. 30, 27–66 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Charlier, C.: Asymptotics of Hankel determinants with a one-cut regular potential and Fisher–Hartwig singularities. Int. Math. Res. Not. IMRN 2019, 7515–7576 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Charlier, C.: Exponential moments and piecewise thinning for the Bessel point process. Int. Math. Res. Not. IMRN, rnaa054

  15. Charlier, C.: Large gap asymptotics for the generating function of the sine point process. Proc. Lond. Math. Soc., plms.12393

  16. Charlier, C.: Upper bounds for the maximum deviation of the Pearcey process. Rand. Mat. Theory Appl. https://doi.org/10.1142/S2010326321500398, arXiv:2009.13225

  17. Charlier, C., Claeys, T.: Large gap asymptotics for Airy kernel determinants with discontinuities. Commun. Math. Phys. 375, 1299–1339 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Charlier, C., Claeys, T.: Global rigidity and exponential moments for soft and hard edge point processes. Prob. Math. Phys. arXiv:2002.03833

  19. Charlier, C., Deaño, A.: Asymptotics for Hankel determinants associated to a Hermite weight with a varying discontinuity. SIGMA Symm. Integrabil. Geom. Methods Appl. 14, 43 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Charlier, C., Gharakhloo, R.: Asymptotics of Hankel determinants with a Laguerre-type or Jacobi-type potential and Fisher–Hartwig singularities. Adv. Math. 383, j.aim.2021.107672

  21. Charlier, C., Lenells, J., Mauersberger, J.: Higher order large gap asymptotics at the hard edge for Muttalib–Borodin ensembles. Commun. Math. Phys. arXiv:1906.12130

  22. Chhaibi, R., Madaule, T., Najnudel, J.: On the maximum of the C\(\beta \)E field. Duke Math. J. 167, 2243–2345 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cheliotis, D.: Triangular random matrices and biorthogonal ensembles. Statist. Probab. Lett. 134, 36–44 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Claeys, T., Fahs, B.: Random matrices with merging singularities and the Painlevé V equation. SIGMA Symm. Integrabil. Geom. Methods Appl. 12, 44 (2016)

    MATH  Google Scholar 

  25. Claeys, T., Fahs, B., Lambert, G., Webb, C.: How much can the eigenvalues of a random Hermitian matrix fluctuate? Duke Math J. arxiv:1906.01561

  26. Claeys, T., Girotti, M., Stivigny, D.: Large gap asymptotics at the hard edge for product random matrices and Muttalib–Borodin ensembles. Int. Math. Res. Not. IMRN 2019, 2800–2847 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Claeys, T., Glesner, G., Minakov, A., Yang, M.: Asymptotics for averages over classical orthogonal ensembles. Int. Math. Res. Not. arxiv:2008.07785

  28. Claeys, T., Romano, S.: Biorthogonal ensembles with two-particle interactions. Nonlinearity 27(10), 2419–2444 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Claeys, T., Wang, D.: Random matrices with equispaced external source. Commun. Math. Phys. 328(3), 1023–1077 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dai, D., Xu, S.-X., Zhang, L.: On the deformed Pearcey determinant. arXiv:2007.12691

  31. Deift, P.: Orthogonal polynomials and random matrices: a Riemann-Hilbert approach. Am. Math. Soc. 3 (2000)

  32. Deift, P., Its, A., Krasovky, I.: Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities. Ann. Math. 174, 1243–1299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Deift, P., Its, A., Krasovsky, I.: On the asymptotics of a Toeplitz determinant with singularities. MSRI Publications65 (2014), Cambridge University Press

  34. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ehrhardt, T.: A status report on the asymptotic behavior of Toeplitz determinants with Fisher–Hartwig singularities. Oper. Theory Adv. Appl. 124, 217–241 (2001)

    MathSciNet  MATH  Google Scholar 

  36. Eichelsbacher, P., Sommerauer, J., Stolz, M.: Large deviations for disordered bosons and multiple orthogonal polynomial ensembles. J. Math. Phys. 52, 16 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Erdös, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229, 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fisher, M.E., Hartwig, R.E.: Toeplitz determinants: some applications, theorems, and conjectures. Adv. Chem. Phys. 15, 333–353 (1968)

    Google Scholar 

  39. Forrester, P.J., Ipsen, J.R.: Selberg integral theory and Muttalib–Borodin ensembles. Adv. Appl. Math. 95, 152–176 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Forrester, P.J., Liu, D.-Z.: Raney distributions and random matrix theory. J. Stat. Phys. 158, 1051–1082 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Forrester, P.J., Wang, D.: Muttalib–Borodin ensembles in random matrix theory-realisations and correlation functions. Electron. J. Probab. 22, 43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Foulquié Moreno, A., Martinez-Finkelshtein, A., Sousa, V.L.: On a conjecture of A Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials. J. Approx. Theory 162, 807–831 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gakhov, F.D.: Boundary value problems, Dover Publications Inc., New York, (1990). Translated from the Russian, Reprint of the 1966 translation

  44. Garoni, T.M.: On the asymptotics of some large Hankel determinants generated by Fisher–Hartwig symbols defined on the real line. J. Math. Phys. 46, 19 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gautié, T., Le Doussal, P., Majumdar, S.N., Schehr, G.: Non-crossing Brownian paths and Dyson Brownian motion under a moving boundary. J. Stat. Phys. 177, 752–805 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  46. Grela, J., Majumdar, S.N., Schehr, G.: Non-intersecting Brownian bridges in the flat-to-flat geometry. arXiv:2103.02545

  47. Gustavsson, J.: Gaussian fluctuations of eigenvalues in the GUE. Ann. Inst. H. Poincare Probab. Statist. 41, 151–178 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Holcomb, D., Paquette, E.: The maximum deviation of the Sine-\(\beta \) counting process. Electron. Commun. Probab. 23, 13 (2018). (paper no. 58)

    Article  MathSciNet  MATH  Google Scholar 

  49. Its, A., Krasovsky, I.: Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump. Contemp. Math. 458, 215–248 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Krasovsky, I.: Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant. Duke Math. J. 139, 581–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  51. Kuijlaars, A.B.J.: A vector equilibrium problem for Muttalib–Borodin biorthogonal ensembles. SIGMA Symm. Integrabil. Geom. Methods Appl. 12, 15 (2016)

    MathSciNet  MATH  Google Scholar 

  52. Kuijlaars, A.B.J., Molag, L.D.: The local universality of Muttalib–Borodin biorthogonal ensembles with parameter \(\theta = \frac{1}{2}\). Nonlinearity 32, 3023–3081 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Kuijlaars, A.B.J., McLaughlin, K.T.-R., Van Assche, W., Vanlessen, M.: The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on \([-1,1]\). Adv. Math. 188, 337–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Kuijlaars, A.B.J., Stivigny, D.: Singular values of products of random matrices and polynomial ensembles. Rand. Mat. Theory Appl. 3, 22 (2014)

    MathSciNet  MATH  Google Scholar 

  55. Lambert, G.: Limit theorems for biorthogonal ensembles and related combinatorial identities. Adv. Math. 329, 590–648 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  56. Lambert, G.: Mesoscopic central limit theorem for the circular beta-ensembles and applications. Electron. J. Probab. 26, 33 (2021)

    Article  MATH  Google Scholar 

  57. Molag, L.D.: The local universality of Muttalib–Borodin ensembles when the parameter \(\theta \) is the reciprocal of an integer. arXiv:2003.11299

  58. Muttalib, K.A.: Random matrix models with additional interactions. J. Phys. A 28, L159–L164 (1995)

    Article  MathSciNet  Google Scholar 

  59. Paquette, E., Zeitouni, O.: The maximum of the CUE field. Int. Math. Res. Not. 2018(16), 5028–5119 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  60. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, New York (1997)

    Book  MATH  Google Scholar 

  61. Soshnikov, A.: Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. J. Stat. Phys. 100, 491–522 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Wang, D., Zhang, L.: A vector Riemann–Hilbert approach to the Muttalib–Borodin ensembles. arXiv:2103.10327

  63. Widom, H.: Toeplitz determinants with singular generating functions. Am. J. Math. 95, 333–383 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  64. Wu, X.-B., Xu, S.-X., Zhao, Y.-Q.: Gaussian unitary ensemble with boundary spectrum singularity and \(\sigma \)-form of the Painlevé II equation. Stud. Appl. Math. 140, 221–251 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  65. Zhang, L.: Local universality in biorthogonal Laguerre ensembles. J. Stat. Phys. 161, 688–711 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Zhang, L.: On Wrights generalized Bessel kernel. Phys. D 340, 27–39 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is grateful to Tom Claeys for useful remarks. This work is supported by the European Research Council, Grant Agreement No. 682537.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Model RH problems

Model RH problems

In this section, \(\alpha \) and \(\beta \) are such that \(\text {Re}\,\alpha >-1\) and \(\text {Re}\,\beta \in (-\frac{1}{2},\frac{1}{2})\).

1.1 Bessel model RH problem for \(\Phi _{\mathrm {Be}}(\cdot ) = \Phi _{\mathrm {Be}}(\cdot ;\alpha )\)

  1. (a)

    \(\Phi _{\mathrm {Be}} : {\mathbb {C}} \setminus \Sigma _{\mathrm {Be}} \rightarrow {\mathbb {C}}^{2\times 2}\) is analytic, where \(\Sigma _{\mathrm {Be}} = (-\infty ,0]\cup e^{\frac{2\pi i}{3}}(0,+\infty ) \cup e^{-\frac{2\pi i}{3}}(0,+\infty )\) and is oriented as shown in Fig. 6.

  2. (b)

    \(\Phi _{\mathrm {Be}}\) satisfies the jump relations

    $$\begin{aligned} \begin{array}{l l} \Phi _{\mathrm {Be},+}(z) = \Phi _{\mathrm {Be},-}(z) \begin{pmatrix} 0 &{} 1 \\ -1 &{} 0 \end{pmatrix}, &{} z \in (-\infty ,0), \\ \Phi _{\mathrm {Be},+}(z) = \Phi _{\mathrm {Be},-}(z) \begin{pmatrix} 1 &{} 0 \\ e^{\pi i \alpha } &{} 1 \end{pmatrix}, &{} z \in e^{ \frac{2\pi i}{3} } (0,+\infty ), \\ \Phi _{\mathrm {Be},+}(z) = \Phi _{\mathrm {Be},-}(z) \begin{pmatrix} 1 &{} 0 \\ e^{-\pi i \alpha } &{} 1 \end{pmatrix}, &{} z \in e^{ -\frac{2\pi i}{3} } (0,+\infty ). \\ \end{array} \end{aligned}$$
    (A.1)
  3. (c)

    As \(z \rightarrow \infty \), \(z \notin \Sigma _{\mathrm {Be}}\),

    $$\begin{aligned} \Phi _{\mathrm {Be}}(z) = ( 2\pi z^{\frac{1}{2}} )^{-\frac{\sigma _{3}}{2}}A \left( I+\sum _{k=1}^{\infty } \Phi _{\mathrm {Be},k} z^{-k/2}\right) e^{2z^{\frac{1}{2}}\sigma _{3}}, \qquad A = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 &{} i \\ i &{} 1 \end{pmatrix},\nonumber \\ \end{aligned}$$
    (A.2)

    where the matrices \(\Phi _{\mathrm {Be},k}\) are independent of z, and

    $$\begin{aligned} \Phi _{\mathrm {Be},1} = \frac{1}{16}\begin{pmatrix} -(1+4\alpha ^{2}) &{} -2i \\ -2i &{} 1+4\alpha ^{2} \end{pmatrix}. \end{aligned}$$
    (A.3)
  4. (d)

    As \(z \rightarrow 0\),

    $$\begin{aligned} \begin{array}{l l} \displaystyle \Phi _{\mathrm {Be}}(z) = \left\{ \begin{array}{l l} \begin{pmatrix} {{\mathcal {O}}}(1) &{} {{\mathcal {O}}}(\log z) \\ {{\mathcal {O}}}(1) &{} {{\mathcal {O}}}(\log z) \end{pmatrix}, &{} |\arg z|< \frac{2\pi }{3}, \\ \begin{pmatrix} {{\mathcal {O}}}(\log z) &{} {{\mathcal {O}}}(\log z) \\ {{\mathcal {O}}}(\log z) &{} {{\mathcal {O}}}(\log z) \end{pmatrix}, &{} \frac{2\pi }{3}< |\arg z|< \pi , \end{array} \right. , &{} \displaystyle \text{ if } \text {Re}\,\alpha = 0, \\ \displaystyle \Phi _{\mathrm {Be}}(z) = \left\{ \begin{array}{l l} \begin{pmatrix} {{\mathcal {O}}}(1) &{} {{\mathcal {O}}}(1) \\ {{\mathcal {O}}}(1) &{} {{\mathcal {O}}}(1) \end{pmatrix}z^{\frac{\alpha }{2}\sigma _{3}}, &{} |\arg z |< \frac{2\pi }{3}, \\ \begin{pmatrix} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) \\ {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) \end{pmatrix}, &{} \frac{2\pi }{3}<|\arg z |< \pi , \end{array} \right. , &{} \displaystyle \text{ if } \text {Re}\,\alpha > 0, \\ \displaystyle \Phi _{\mathrm {Be}}(z) = \begin{pmatrix} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) \\ {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) \end{pmatrix},&\displaystyle \text{ if } \text {Re}\,\alpha < 0. \end{array} \end{aligned}$$
    (A.4)
Fig. 6
figure 6

The jump contour \(\Sigma _{\mathrm {Be}}\) for \(\Phi _{\mathrm {Be}}\)

The unique solution to this RH problem is expressed in terms of Bessel functions. Since this explicit expression is unimportant for us, we will not write it down. The interested reader can find more information and background on this RH problem in e.g. [53, Section 6].

1.2 Confluent hypergeometric model RH problem

  1. (a)

    \(\Phi _{\mathrm {HG}} : {\mathbb {C}} \setminus \Sigma _{\mathrm {HG}} \rightarrow {\mathbb {C}}^{2 \times 2}\) is analytic, with \(\Sigma _{\mathrm {HG}} = \cup _{j=1}^{8}\Gamma _{j}\), and \(\Gamma _{1},\ldots ,\Gamma _{8}\) are shown in Fig. 7.

  2. (b)

    \(\Phi _{\mathrm {HG}}\) satisfies the jumps

    $$\begin{aligned} \Phi _{\mathrm {HG},+}(z) = \Phi _{\mathrm {HG},-}(z)J_{k}, \qquad z \in \Gamma _{k}, \; k = 1,...,8, \end{aligned}$$
    (A.5)

    where \(J_{8} = \begin{pmatrix} 1 &{} 0 \\ e^{i\pi \alpha }e^{i\pi \beta } &{} 1 \end{pmatrix}\) and

    $$\begin{aligned}&\, J_{1} = \begin{pmatrix} 0 &{} e^{-i\pi \beta } \\ -e^{i\pi \beta } &{} 0 \end{pmatrix}, \; J_{5} = \begin{pmatrix} 0 &{} e^{i\pi \beta } \\ -e^{-i\pi \beta } &{} 0 \end{pmatrix},\; J_{3} = J_{7} = \begin{pmatrix} e^{\frac{i\pi \alpha }{2}} &{} 0 \\ 0 &{} e^{-\frac{i\pi \alpha }{2}} \end{pmatrix}, \\&\, J_{2} = \begin{pmatrix} 1 &{} 0 \\ e^{-i\pi \alpha }e^{i\pi \beta } &{} 1 \end{pmatrix}, \; J_{4} = \begin{pmatrix} 1 &{} 0 \\ e^{i\pi \alpha }e^{-i\pi \beta } &{} 1 \end{pmatrix}, \; J_{6} = \begin{pmatrix} 1 &{} 0 \\ e^{-i\pi \alpha }e^{-i\pi \beta } &{} 1 \end{pmatrix}. \end{aligned}$$
    Fig. 7
    figure 7

    The jump contour \(\Sigma _{\mathrm {HG}}\) for \(\Phi _{\mathrm {HG}}\). Each of the rays \(\Gamma _{1},\ldots ,\Gamma _{8}\) forms an angle with \((0,+\infty )\) which is a multiple of \(\frac{\pi }{4}\)

  3. (c)

    As \(z \rightarrow \infty \), \(z \notin \Sigma _{\mathrm {HG}}\), we have

    $$\begin{aligned} \Phi _{\mathrm {HG}}(z) = \left( I + \sum _{k=1}^{\infty } \frac{\Phi _{\mathrm {HG},k}}{z^{k}} \right) z^{-\beta \sigma _{3}}e^{-\frac{z}{2}\sigma _{3}}M^{-1}(z), \end{aligned}$$
    (A.6)

    where

    $$\begin{aligned} \Phi _{\mathrm {HG},1} = \Big (\beta ^{2}-\frac{\alpha ^{2}}{4}\Big ) \begin{pmatrix} -1 &{} \tau (\alpha ,\beta ) \\ - \tau (\alpha ,-\beta ) &{} 1 \end{pmatrix}, \qquad \tau (\alpha ,\beta ) = \frac{- \Gamma \left( \frac{\alpha }{2}-\beta \right) }{\Gamma \left( \frac{\alpha }{2}+\beta + 1 \right) },\nonumber \\ \end{aligned}$$
    (A.7)

    and

    $$\begin{aligned} M(z) = \left\{ \begin{array}{l l} \displaystyle e^{\frac{i\pi \alpha }{4} \sigma _{3}}e^{- i\pi \beta \sigma _{3}}, &{} \displaystyle \frac{\pi }{2}< \arg z< \pi , \\ \displaystyle e^{-\frac{i\pi \alpha }{4} \sigma _{3}}e^{-i\pi \beta \sigma _{3}}, &{} \displaystyle \pi< \arg z< \frac{3\pi }{2}, \\ e^{\frac{i\pi \alpha }{4}\sigma _{3}} \begin{pmatrix} 0 &{} 1 \\ -1 &{} 0 \end{pmatrix}, &{} \displaystyle -\frac{\pi }{2}< \arg z< 0, \\ e^{-\frac{i\pi \alpha }{4}\sigma _{3}} \begin{pmatrix} 0 &{} 1 \\ -1 &{} 0 \end{pmatrix},&\displaystyle 0< \arg z < \frac{\pi }{2}. \end{array} \right. \end{aligned}$$
    (A.8)

    In (A.6), \(z^{-\beta }\) has a cut along \(i{\mathbb {R}}^{-}\), such that \(z^{-\beta } \in {\mathbb {R}}\) as \(z \in {\mathbb {R}}^{+}\).

    As \(z \rightarrow 0\),

    $$\begin{aligned}&\Phi _{\mathrm {HG}}(z) = \left\{ \begin{array}{l l} \begin{pmatrix} {{\mathcal {O}}}(1) &{} {{\mathcal {O}}}(\log z) \\ {{\mathcal {O}}}(1) &{} {{\mathcal {O}}}(\log z) \end{pmatrix}, &{} \text{ if } z \in II \cup III \cup VI \cup VII, \\ \begin{pmatrix} {{\mathcal {O}}}(\log z) &{} {{\mathcal {O}}}(\log z) \\ {{\mathcal {O}}}(\log z) &{} {{\mathcal {O}}}(\log z) \end{pmatrix},&\text{ if } z \in I\cup IV \cup V \cup VIII, \end{array} \right. \nonumber \\&\Phi _{\mathrm {HG}}(z) = \left\{ \begin{array}{l l} \begin{pmatrix} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) \\ {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) \end{pmatrix}, &{} \text{ if } z \in II \cup III \cup VI \cup VII, \\ \begin{pmatrix} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) \\ {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{-\frac{\alpha }{2}}) \end{pmatrix},&\text{ if } z \in I\cup IV \cup V \cup VIII, \end{array} \right. \nonumber \\&\Phi _{\mathrm {HG}}(z) = \begin{pmatrix} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) \\ {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) &{} {{\mathcal {O}}}(z^{\frac{\alpha }{2}}) \end{pmatrix}, \end{aligned}$$
    (A.9)

    where the first, second and third lines read for \(\text {Re}\,\alpha = 0\), \(\text {Re}\,\alpha > 0\) and \(\text {Re}\,\alpha < 0\), respectively.

The unique solution to this RH problem is expressed in terms of hypergeometric functions. Since we will not use the explicit expression of the solution, we will not write it down here. In the case where \(\alpha =0\), this RH problem was first solved in [49]. We refer the interested reader to [32, Section 4.2] and [42, Section 2.6] for more details and background on this RH problem for general values of \(\alpha \) and \(\beta \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlier, C. Asymptotics of Muttalib–Borodin determinants with Fisher–Hartwig singularities. Sel. Math. New Ser. 28, 50 (2022). https://doi.org/10.1007/s00029-022-00762-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00762-6

Keywords

Mathematics Subject Classification

Navigation