Skip to main content
Log in

Well-posedness for a pseudomonotone evolution problem with multiplicative noise

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Our aim is the study of well-posedness for the stochastic evolution equation

$$\begin{aligned} \mathrm{d}u -\mathrm {div}\,(|\nabla u|^{p-2}\nabla u +F(u)) \,\mathrm{d} t = H(u) \,\mathrm{d}W, \end{aligned}$$

for \(T>0\), on a bounded Lipschitz domain \(D \subset \mathbb {R}^d\) with homogeneous Dirichlet boundary conditions, initial values \(u_0\in L^2(D)\), \(p>2\) and \(F:\mathbb {R}\rightarrow \mathbb {R}^d\) Lipschitz continuous. W(t) is a cylindrical Wiener process in \(L^2(D)\) with respect to a filtration \((\mathcal {F}_t)\) satisfying the usual assumptions on a complete, countably generated probability space \((\varOmega ,\mathcal {F},\mathbb {P})\). We consider the case of multiplicative noise satisfying appropriate regularity conditions. By a semi-implicit time discretization, we obtain approximate solutions. Using the theorems of Skorokhod and Prokhorov, we are able to pass to the limit and show existence of martingale solutions. We establish pathwise \(L^1\)-contraction and uniqueness and obtain existence and uniqueness of strong solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Barbu. Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New York 2010.

    Book  MATH  Google Scholar 

  2. L. Baňas, Z. Brzeźniak, M. Neklyudov and A. Prohl. Stochastic Ferromagnetism. De Gruyter, Berlin/Boston 2014.

    MATH  Google Scholar 

  3. L. Baňas, Z. Brzeźniak, M. Neklyudov and A. Prohl. A convergent finite-element-based discretization of the stochastic Landau-Lifshitz-Gilbert equation. IMA J. Numer. Anal. 34 (2014), no. 2, 502–549.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Vovelle F. Berthelin. Stochastic isentropic euler equations. Preprint, 2016. http://math.univ-lyon1.fr/~vovelle/publications.html.

  5. D. Breit. Existence Theory for Stochastic Power Law Fluids. J. Math. Fluid Mech. 17 (2015), 295–326.

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Brzeźniak, B. Goldys, and M. Ondreját. Stochastic geometric partial differential equations. In New trends in stochastic analysis and related topics, volume 12 of Interdiscip. Math. Sci., pages 1–32. World Sci. Publ., Hackensack, NJ 2012.

  7. Z. Brzeźniak and M. Ondreját. Weak solutions to stochastic wave equations with values in Riemannian manifolds. Comm. Partial Differential Equations, 36 (2011), no. 9, 1624–1653.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.G. Crandall. The semigroup approach to first order quasilinear equations in several space variables. Israel J. Math., 12 (1972), 153–163.

    Article  MathSciNet  Google Scholar 

  9. C. Dellacherie, P.A Meyer. Probabilités et potentiel. Chapitres V-VIII. Théorie des martingales. Revised edition. Actualités Scientifiques et Industrielles, 1385. Hermann, Paris 1980.

  10. G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions. Volume 44 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 1992.

  11. A. Debussche, N. Glatt-Holtz and R. Temam. Local martingale and pathwise solutions for an abstract fluids model. Phys. D 240 (2011), no. 14-15, 1123–1144.

    Article  MathSciNet  MATH  Google Scholar 

  12. R. E. Edwards. Functional analysis. Dover Publications, Inc., New York 1995.

    Google Scholar 

  13. F. Flandoli and D. Gatarek. Martingale and stationary solutions for stochastic Navier-Stokes equations. Prob. Theory Relat. Fields, 102 (1995), no. 3, 367–391.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Garsia, E. Rodemich H. Rumsey. A real variable lemma and the continuity of paths of some Gaussian processes. Indiana Univ. Math. Journal, 20 (1970/71), 565–578.

  15. I. Gyöngy and N. Krylov. Existence of strong solutions for Itô’s stochastic equations via approximations. Probab. Theory Related Fields, 105 (1996), no. 2, 143–158.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Hofmanová and T. Zhang. Quasilinear parabolic stochastic partial differential equations: existence, uniqueness. Stochastic Process. Appl. 127 (2017), no. 10, 3354–3371.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Hofmanová. Degenerate parabolic stochastic partial differential equations. Stochastic Process. Appl., 123 (2013), no. 12, 4294–4336.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Hofmanová and J. Seidler. On weak solutions of stochastic differential equations. Stoch. Anal. Appl., 30 (2012), no. 1, 100–121.

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Hofmanová and J. Seidler. On weak solutions of stochastic differential equations II. Stoch. Anal. Appl., 31 (2013), no. 4, 663–670.

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Liu and M. Röckner. Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differential Equations 254 (2013), no. 2, 725–755.

    Article  MathSciNet  MATH  Google Scholar 

  21. W. Liu and M. Röckner. Stochastic partial differential equations: an introduction. Universitext. Springer, Cham, 2015.

    Book  MATH  Google Scholar 

  22. L. Mytnik, E. Perkins, and A. Sturm. On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34 (2006), no. 5, 1910–1959.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Ondreját. Stochastic nonlinear wave equations in local Sobolev spaces. Electron. J. Probab., 15 (2010), no. 33, 1041–1091.

    Article  MathSciNet  MATH  Google Scholar 

  24. C. Prévôt and M. Röckner. A concise course on stochastic partial differential equations. Volume 1905 of Lecture Notes in Mathematics. Springer, Berlin 2007.

  25. E. Pardoux. Équations aux dérivées partielles stochastiques non linéaires monotones. PhD thesis, University of Paris Sud 1975.

  26. T. Roubíček. Nonlinear Partial Differential Equations with Applications. Springer, Basel 2013.

    Book  MATH  Google Scholar 

  27. J. Simon. Compact sets in the space \(L^p(0, T;B)\). Ann. Mat. Pura Appl. 146 (1987), no. 4, 65–96.

    MathSciNet  MATH  Google Scholar 

  28. J. Simon. Sobolev, Besov and Nikolskii fractional spaces: imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157 (1990), no. 4, 117–148.

    Article  MathSciNet  MATH  Google Scholar 

  29. D.W. Stroock and S.R.S. Varadhan. Multidimensional diffusion processes. Springer-Verlag, Berlin/New York 1979.

    MATH  Google Scholar 

  30. R. Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam/New York/Oxford 1977.

    MATH  Google Scholar 

  31. A.W van der Vaart and J.A. Wellner. Weak convergence and empirical processes. Springer, New York 1996.

    Book  MATH  Google Scholar 

  32. T. Yamada and S. Watanabe. On the uniqueness of solutions of stochastic differential equations, I, II. J. Math. Kyoto Univ. 11 (1971), 155–167, 553–563.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallet, G., Zimmermann, A. Well-posedness for a pseudomonotone evolution problem with multiplicative noise. J. Evol. Equ. 19, 153–202 (2019). https://doi.org/10.1007/s00028-018-0472-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0472-0

Mathematics Subject Classification

Keywords

Navigation