Skip to main content
Log in

Existence to nonlinear parabolic problems with unbounded weights

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the weighted parabolic problem of the type

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{ll} u_t-\mathrm{div}(\omega _2(x)|\nabla u|^{p-2} \nabla u )= \lambda \omega _1(x) |u|^{p-2}u,&{} x\in \Omega ,\\ u(x,0)=f(x),&{} x\in \Omega ,\\ u(x,t)=0,&{} x\in \partial \Omega ,\ t>0,\\ \end{array}\right. \end{aligned} \end{aligned}$$

for quite a general class of possibly unbounded weights \( \omega _1,\omega _2\) satisfying the Hardy-type inequality. We prove existence of a global weak solution in the weighted Sobolev spaces provided that \(\lambda >0\) is smaller than the optimal constant in the inequality. The domain is assumed to be bounded or quasibounded. The obtained solution is proven to belong to

$$\begin{aligned} L^p({{\mathbb {R}}}_+; W_{(\omega _1,\omega _2),0}^{1,p}(\Omega ))\cap L^\infty ({{\mathbb {R}}}_+; L^2(\Omega )). \end{aligned}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Abdellaoui, I. Peral, and M. Walias. Some existence and regularity results for porous media and fast diffusion equations with a gradient term. Trans. Amer. Math. Soc., 367(7):4757–4791, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. T. Anh and T. D. Ke. On quasilinear parabolic equations involving weighted \(p\)-Laplacian operators. NoDEA Nonlinear Differential Equations Appl., 17(2):195–212, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Attar, S. Merchán, and I. Peral. A remark on the existence properties of a semilinear heat equation involving a Hardy-Leray potential. J. Evol. Equ., 15(1):239–250, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Baras and J. Goldstein. The heat equation with a singular potential. Trans. Amer. Math. Soc., 284(1):121–139, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  5. L. Boccardo, A. Dall’Aglio, T. Gallouët, and L. Orsina. Nonlinear parabolic equations with measure data. J. Funct. Anal., 147(1):237–258, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Boccardo, T. Gallouët, and L. Orsina. Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math., 73:203–223, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Boccardo and F. Murat. Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal., 19(6):581–597, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Boccardo, F. Murat, and J.-P. Puel. Existence of bounded solutions for nonlinear elliptic unilateral problems. Ann. Mat. Pura Appl. (4), 152:183–196, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Bonforte, J. Dolbeault, M. Muratori, and B. Nazaret. Weighted fast diffusion equations (part i): Sharp asymptotic rates without symmetry and symmetry breaking in caffarelli-kohn-nirenberg inequalities. To Appear in Kinet. Rel. Mod., 2016.

  10. M. Bonforte, J. Dolbeault, M. Muratori, and B. Nazaret. Weighted fast diffusion equations (part ii): Sharp asymptotic rates of convergence in relative error by entropy methods. To Appear in Kinet. Rel. Mod., 2016.

  11. H. Brézis and E. Lieb. A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc., 88(3):486–490, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Dall’Aglio, D. Giachetti, and I. Peral. Results on parabolic equations related to some Caffarelli-Kohn-Nirenberg inequalities. SIAM J. Math. Anal., 36(3):691–716, 2004/05.

  13. B. Franchi, R. Serapioni, and F. Serra Cassano. Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields. Boll. Un. Mat. Ital. B (7), 11(1):83–117, 1997.

  14. J. P. García Azorero and I. Peral Alonso. Hardy inequalities and some critical elliptic and parabolic problems. J. Differential Equations, 144(2):441–476, 1998.

  15. J. A. Goldstein, D. Hauer, and A. Rhandi. Existence and nonexistence of positive solutions of \(p\)-Kolmogorov equations perturbed by a Hardy potential. Nonlinear Anal., 131:121–154, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Kufner and B. Opic. How to define reasonably weighted Sobolev spaces. Comment. Math. Univ. Carolin., 25(3):537–554, 1984.

    MathSciNet  MATH  Google Scholar 

  17. S. Merchán, L. Montoro, I. Peral, and B. Sciunzi. Existence and qualitative properties of solutions to a quasilinear elliptic equation involving the Hardy-Leray potential. Ann. Inst. H. Poincaré Anal. Non Linéaire, 31(1):1–22, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Opic and A. Kufner. Hardy-type inequalities, volume 219 of Pitman Research Notes in Mathematics Series. Longman Scientific & Technical, Harlow, 1990.

  19. J. Simon. Compact sets in the space \(L^p(0,T;B)\). Ann. Mat. Pura Appl. (4), 146:65–96, 1987.

    MATH  Google Scholar 

  20. I. Skrzypczak. Hardy-type inequalities derived from \(p\)-harmonic problems. Nonlinear Anal., 93:30–50, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Skrzypczak and A. Zatorska-Goldstein. Existence of solutions to a nonlinear parabolic problem with two weights. to appear in Colloq. Math., 2018.

  22. J.-L. Vazquez and E. Zuazua. The Hardy inequality and the asymptotic behaviour of the heat equation with an inverse-square potential. J. Funct. Anal., 173(1):103–153, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Chlebicka.

Additional information

Anna Zatorska-Goldstein: The research of AZG has been supported by the NCN Grant No. 2012/05/E/ST1/03232 (years 2013–2017) and by the Foundation for Polish Science Grant No. POMOST BIS/2012-6/3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chlebicka, I., Zatorska-Goldstein, A. Existence to nonlinear parabolic problems with unbounded weights. J. Evol. Equ. 19, 1–19 (2019). https://doi.org/10.1007/s00028-018-0465-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0465-z

Keywords

Mathematics Subject Classification

Navigation