Skip to main content
Log in

On the stability in phase-lag heat conduction with two temperatures

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We investigate the well-posedness and the stability of the solutions for several Taylor approximations of the phase-lag two-temperature equations. We give conditions on the parameters which guarantee the existence and uniqueness of solutions as well as the stability and the instability of the solutions for each approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. A. Abdallah, Dual phase lag heat conduction and thermoelastic properties of a semi-infinite medium induced by ultrashort pulsed laser, Progress in Physics, 3 (2009), 60–63.

    Google Scholar 

  2. S. Banik and M. Kanoria. Effects of three-phase-lag on two temperatures generalized thermoelasticity for an infinite medium with a spherical cavity, Applied Mathematics and Mechanics, 33 (2012), 483–498.

    Article  MathSciNet  Google Scholar 

  3. K. Borgmeyer, R. Quintanilla and R. Racke, Phase-lag heat conduction: decay rates for limit problems and well-posedness, J. Evolution Equations 14 (2014), 863–884.

    Article  MathSciNet  Google Scholar 

  4. C. Cattaneo, On a form of heat equation which eliminates the paradox of instantaneous propagation, C. R. Acad. Sci. Paris, 247 (1958), 431–433.

    MathSciNet  MATH  Google Scholar 

  5. P. J. Chen and M. E. Gurtin, On a theory of heat involving two temperatures, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 614–627.

    Article  Google Scholar 

  6. P. J. Chen, M. E. Gurtin and W. O. Williams, A note on non-simple heat conduction, J. Applied Mathematics and Physics (ZAMP), 19 (1968), 969–970.

    Article  Google Scholar 

  7. P. J. Chen, M. E. Gurtin and W. O. Williams, On the thermodynamics of non-simple materials with two temperatures, J. Applied Mathematics and Physics (ZAMP), 20 (1969), 107–112.

    Article  Google Scholar 

  8. S. K. R. Choudhuri, On a thermoelastic three-phase-lag model, J. Thermal Stresses, 30 (2007), 231–238.

    Article  Google Scholar 

  9. M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Appl. Math. Letters 22 (2009), 1374–1379.

    Article  MathSciNet  Google Scholar 

  10. M. A. Ezzat, A. S. El-Karamany and A. A. El-Bary, Two-temperature theory in Green-Naghdi thermoelasticity with fractional phase-lag heat transfer, Mycrosystem Technologies, (2017), https://doi.org/10.1007/s00542-017-3425-6.

  11. M. A. Ezzat, A. S. El-Karamany and S. M. Ezzat, Two-temperature theory in magneto-thermoelasticity with fractional order dual-phase-lag heat transfer, Nuclear Engineering and Design, 252 (2012), 267–277.

    Article  Google Scholar 

  12. A. E. Green and P. M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal Stresses, 15 (1992), 253–264.

    Article  MathSciNet  Google Scholar 

  13. A. E. Green and P. M. Naghdi, Thermoelasticity without energy dissipation, J. Elasticity, 31 (1993), 189–208.

    Article  MathSciNet  Google Scholar 

  14. M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rat. Mech. Anal., 44 (1971), 387–399.

    Article  MathSciNet  Google Scholar 

  15. M. A. Hader, M. A. Al-Nimr and B. A. Abu Nabah, The Dual-Phase-Lag Heat Conduction Model in Thin Slabs Under a Fluctuating Volumetric Thermal Disturbance, International J. Thermophysics, 23 (2002), 1669–1680.

  16. P. M. Jordan and R. Quintanilla, A note on the two-temperature theory with dual-phase-lag decay: some exact solutions, Mechanics Research Communications, 36 (2009), 796–803.

    Article  MathSciNet  Google Scholar 

  17. J.E. Marsden and T.J.R Hughes, Topics in the mathematical foundations of elasticity, in: Nonlinear analysis and mechanics: Heriot–Watt Symposium, vol. II, 30–285. Pitman Research Notes in Mathematics 27, London 1978.

  18. A. Miranville and R. Quintanilla, A phase-field model based on a three-phase-lag heat conduction, Applied Mathematics and Optimization, 63 (2011), 133–150.

    Article  MathSciNet  Google Scholar 

  19. S. Mukhopadhyay, R Prasad and R. Kumar, On the theory of Two-Temperature Thermoelaticity with Two Phase-Lags, J. Thermal Stresses, 34 (2011), 352–365.

    Article  Google Scholar 

  20. M. A. Othman, W. M. Hasona and E. M. Abd-Elaziz, Effect of rotation on micropolar generalized thermoelasticity with two temperatures using a dual-phase-lag model, Canadian J. Physics, 92 (2014), 149–158.

    Article  Google Scholar 

  21. R. Quintanilla, Exponential stability in the dual-phase-lag heat conduction theory, J. Non-Equilibrium Thermodynamics, 27 (2002), 217–227.

    Article  Google Scholar 

  22. R. Quintanilla, A Well-Posed Problem for the Dual-Phase-Lag Heat Conduction, J. Thermal Stresses, 31 (2008), 260–269.

    Article  Google Scholar 

  23. R. Quintanilla, A Well-Posed Problem for the Three-Dual-Phase-Lag Heat Conduction, J. Thermal Stresses, 32 (2009), 1270–1278.

    Article  Google Scholar 

  24. R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag thermoelasticity, SIAM J. Appl. Math., 66 (2006), 977–1001.

    Article  MathSciNet  Google Scholar 

  25. R. Quintanilla and R. Racke, A note on stability of dual-phase-lag heat conduction, Int. J. Heat Mass Transfer, 49 (2006), 1209–1213.

    Article  Google Scholar 

  26. R. Quintanilla and R. Racke, Qualitative aspects in dual-phase-lag heat conduction, Proc. Royal Society London A., 463 (2007), 659–674.

    Article  MathSciNet  Google Scholar 

  27. R. Quintanilla and R. Racke, A note on stability in three-phase-lag heat conduction, Int. J. Heat Mass Transfer, 51 (2008), 24–29.

    Article  Google Scholar 

  28. R. Quintanilla and R. Racke, Spatial behavior in phase-lag heat conduction, Differential and Integral Equations, 28 (2015), 291–308.

    MathSciNet  MATH  Google Scholar 

  29. S. A. Rukolaine, Unphysical effects of the dual-phase-lag model of heat conduction, International J. Heat and Mass Transfer, 78 (2014), 58–63.

    Article  Google Scholar 

  30. S. M. Said and M. I. A. Othman, Effect of mechanical force, rotation and moving internal heat source on a two-temperature fiber-reinforced thermoelastic medium with two theories, Mechanics of Time-Dependent Materials, 21 (2017), 245–261.

    Article  Google Scholar 

  31. D. Y. Tzou, A unified approach for heat conduction from macro to micro-scales, ASME J. Heat Transfer, 117 (1995), 8–16.

    Article  Google Scholar 

  32. W. E. Warren and P. J. Chen, Wave propagation in two temperatures theory of thermoelaticity, Acta Mechanica, 16 (1973), 83–117.

    Article  Google Scholar 

  33. Y. Zhang, Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues, International Journal of Heat and Mass Transfer, 52 (2009), 4829–4834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Magaña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magaña, A., Miranville, A. & Quintanilla, R. On the stability in phase-lag heat conduction with two temperatures. J. Evol. Equ. 18, 1697–1712 (2018). https://doi.org/10.1007/s00028-018-0457-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-018-0457-z

Keywords

Navigation