Skip to main content
Log in

Planktonic food web structure and dynamic in freshwater marshes after a lock closing in early spring

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

We conducted a weekly survey at two stations of a French coastal marsh during the transition from winter to spring, when the sea lock gates were closed. Field measurements and laboratory experiments were combined in order to describe the structure and dynamics of planktonic food webs. Physico-chemical parameters were measured, and food web typology was described for the first time in the marsh using plankton biomass and internal flux assessment. Both stations changed from a “biological winter” to food webs identified as “multivorous” and passed through to a herbivorous food web. However, food web structure differed significantly between the two stations at the end of the study. Station A remained as a multivorous food web, while station B changed to a strong multivorous food web. After the sea lock gates closing (end of March), an increase in phosphorus concentrations in the water column at station B may have controlled bacterial and phytoplankton development and could explain, at least in part, the differences between the two stations. Our study suggests moreover that differences in water renewal between the two stations could have been responsible for the differences observed. Sea lock gates closing seems to be responsible for the rapid changes observed in food web structure, suggesting that the effects of human hydraulic management on ecosystem functioning in marshes is not yet well understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aminot A, Kérouel R (2004) Hydrologie des écosystèmes marins: paramètres et analyses. Plouzané

  • Beaugrand G (2005) Monitoring pelagic ecosystems using plankton indicators. ICES J Mar Sci 62:333–338

    Article  Google Scholar 

  • Bloem J, Bär-Gilissen MJB, Cappenber TE (1986) Fixation, counting, and manipulation of heterotrophic nanoflagellates. Appl Environ Microb 52:1266–1272

    CAS  Google Scholar 

  • Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic food web processes. Freshw Biol 38(3):483–499

    Article  CAS  Google Scholar 

  • Buskey EJ, Hyatt CJ (2006) Use of the FlowCAM for semi-automated recognition and enumeration of red tide cells (Karenia brevis) in natural plankton samples. Harmful Algae 5:685–692

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farberk S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Suttonkk P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Cushing DH (1989) A difference in structure between ecosystems in strongly stratifled waters and in those that are only weakly stratified. J Plankton Res 11:1–13

    Article  Google Scholar 

  • David V, Sautour B, Galois R, Chardy P (2006) The paradox high zooplankton biomass-low vegetal particulate organic matter in high turbidity zones: what way for energy transfer? J Exp Mar Biol Ecol 333:202–218

    Article  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930

    Article  Google Scholar 

  • Druart JC, Rimet F (2008) Protocoles d’analyse du phytoplancton de l’INRA: prélévement, dénombrement et biovolumes. INRA-Thonon, Rapport SHL 283, Thonon-les Bains

  • Frost BW (1972) Effects of size concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815

    Article  Google Scholar 

  • Gurevitch J, Padilla DK (2004) Are invasive species a major cause of extinctions? Trends Ecol Evol 19(9):470–474

    Article  PubMed  Google Scholar 

  • Hillebrand H, Dürselen CD, Kirschtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Article  Google Scholar 

  • Holt MS (2000) Sources of chemical contaminants and routes into the freshwater environment. Food Chem Toxicol 38:S21–S27

    Article  CAS  PubMed  Google Scholar 

  • Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int Rev Hydrobiol 93:415–432

    Article  CAS  Google Scholar 

  • Jeppesen E, Jensen JP, Sondergaard M, Lauridsen T, Pedersen LJ, Jensen L (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342:151–164

    Article  Google Scholar 

  • Junk WJ, An S, Finlayson CM, Gopal B, Kvet J, Mitchell SA, Mitsch WJ, Robarts RD (2013) Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquat Sci 75:151–167

    Article  CAS  Google Scholar 

  • Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl Environ Microb 53(6):1298–1303

    CAS  Google Scholar 

  • Legendre L, Rassoulzadegan F (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41:153–172

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  CAS  PubMed  Google Scholar 

  • Lubchenco J, Olson AM, Brubaker LB, Carpenter SR, Holland MM, Hubbell SP, Levin SA, MacMahon JA, Matson PA, Melillo JM, Mooney HA, Peterson CH, Pulliam HR, Real LA, Regal PJ, Risser PG (1991) The sustainable biosphere initiative: an ecological research agenda. Ecology 72(2):371–412

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr 45(3):569–579

    Article  CAS  Google Scholar 

  • Mortimer CH (1941) The exchange of dissolved substances between mud and water in lakes. Part I. J Ecol 29:280–329

    Article  CAS  Google Scholar 

  • Mortimer CH (1942) The exchange of dissolved substances between mud and water in lakes. Part II. J Ecol 30:147–201

    Article  CAS  Google Scholar 

  • Mullin MM, Sloan PR, Eppley RW (1966) Relationship between carbon content, cell volume and area in phytoplankton. Limnol Oceanogr 11:307–311

    Article  Google Scholar 

  • Nõges P, Van de Bund WJ, Cardoso A, Solimini A, Heiskanen AS (2009) Assessment of the ecological status of European surface waters: a work in progress. Hydrobiologia 633(1):197–211

    Article  Google Scholar 

  • Porter KG, Orcutt GD (1980) Nutritional adequacy, manageability, and toxicity as factors that determine food quality of green and blue-green algae for Daphnia. Am Soc Limnol Oceanogr Spec Symp 3:268–281

    Google Scholar 

  • Rangel LM, Silva LHS, Rosa P, Roland F, Huszar VLM (2012) Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693:13–28

    Article  CAS  Google Scholar 

  • Reynolds CS (1997) Vegetation processes in the pelagic: a model for ecosystem theory

  • Riemann B, Fuhrman J, Azam F (1982) Bacterial secondary production in freshwater measured by 3H-thymidine incorporation method. Microb Ecol 8:101–113

    Article  CAS  PubMed  Google Scholar 

  • Romo S, Soria J, Fernandez F, Ouahid Y, Baron-Sola A (2013) Water residence time and the dynamics of toxic cyanobacteria. Freshw Biol 58:513–522

    Article  CAS  Google Scholar 

  • Schindler DE (1978) Factors regulating phytoplankton production and standing crop in the world’s freshwaters. Limnol Oceanogr 23:478–486

    Article  Google Scholar 

  • Schindler DW (2006) Recent advances in the understanding and management of eutrophication. Limnol Oceanogr 51(1):356–363

    Article  Google Scholar 

  • Schindler DE, Armstrong FA, Holmgren SK, Brunskill GJ (1971) Eutrophication of Lake 227, Experimental Lakes Area (ELA), northwestern Ontario, by addition of phosphate and nitrate. J Fish Res Board Can 28:1763–1782

    Article  CAS  Google Scholar 

  • Schindler DE, Kling H, Schmidt RV, Prokopowich J, Frost VE, Reid RA, Capel M (1973) Eutrophication of Lake 227 by addition of phosphate and nitrate: the second, third and fourth years of enrichment 1970, 1971 and 1972. J Fish Res Board Can 30:1415–1440

    Article  CAS  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196

    Article  CAS  PubMed  Google Scholar 

  • Steeman Nielsen R (1952) The use of radioactive carbon (14C) for measuring organic production in the sea. J Cons int Explor Mer 18:117–140

    Article  Google Scholar 

  • Suzuki R, Shimodaira H (2006) Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22:1540–1542

    Article  CAS  PubMed  Google Scholar 

  • Symons CC, Arnott SE, Sweetman JN (2012) Grazing rates of crustacean zooplankton communities on intact phytoplankton communities in Canadian Subarctic lakes and ponds. Hydrobiologia 694:131–141

    Article  CAS  Google Scholar 

  • Thioulouse J, Chessel D, Dole´dec S, Olivier J-M (1997) ADE-4: a multivariate analysis and graphical display software. Stat Comput 7:75–83

    Article  Google Scholar 

  • Tortajada S (2011) De l’étude du fonctionnement des réseaux trophiques planctoniques des marais de Charente Maritime vers la recherche d’indicateurs. University of La Rochelle

  • Tortajada S, David V, Brahmia A, Dupuy C, Laniesse T, Parinet B, Pouget F, Rousseau F, Simon-Bouhet B, Robin FX (2011) Variability of salt- and freshwater marsh characteristics on the west coast of France: a spatiotemporal assessment. Water Res 45:4152–4168

    CAS  PubMed  Google Scholar 

  • Troussellier M, Courties C, Vaquer A (1993) Recent applications of flow cytometry in aquatic microbial ecology. Biol Cell 78:111–121

    Article  CAS  PubMed  Google Scholar 

  • Utermöhl H (1958) Zur vervoll kommung der quantitativen phytoplankton-methodik. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9:1–38

    Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21(2):96–103

    Article  PubMed  Google Scholar 

  • Vincent D, Luczak C, Sautour B (2002) Effects of a brief climatic event on zooplankton community structure and distribution in Arcachon Bay (France). J Mar Biol Assoc UK 82:21–30

    Google Scholar 

  • Wollenberg AL (1977) Redundancy analysis, an alternative for canonical analysis. Psychometrika 42:207–219

    Article  Google Scholar 

  • Yentsch CS, Menzel DW (1963) A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep Sea Res Oceanogr Abstr 10:221–231

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the French ministry of education and research, the UNIMA (Union des Marais de Charente-Maritime), the water agencies Loire-Bretagne and Adour-Garonne, the conseil général de Charente-Maritime, the European Union and the CPER (Contrat de Projets État-Région) Poitou-Charente (2007–2013). We thank the imaging-cytometry platform of LIENSs (Littoral, Environnement et SociétéS) and Manon Le Goff and Rudolph Corvaisier from the PACHIDERM platform of LEMAR (Laboratoire des sciences de l’Environnement MARin) for the sample analysis. We are also grateful to Laureen Beaugeard and Françoise Mornet for their technical support, to Bernadette Hubbart for English editing, and to the Forum des Marais Atlantiques for information about fish communities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Masclaux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masclaux, H., Tortajada, S., Philippine, O. et al. Planktonic food web structure and dynamic in freshwater marshes after a lock closing in early spring. Aquat Sci 77, 115–128 (2015). https://doi.org/10.1007/s00027-014-0376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-014-0376-1

Keywords

Navigation