Skip to main content
Log in

Kostant’s Partition Function and Magic Multiplex Juggling Sequences

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Kostant’s partition function is a vector partition function that counts the number of ways one can express a weight of a Lie algebra \(\mathfrak {g}\) as a nonnegative integral linear combination of the positive roots of \(\mathfrak {g}\). Multiplex juggling sequences are generalizations of juggling sequences that specify an initial and terminal configuration of balls and allow for multiple balls at any particular discrete height. Magic multiplex juggling sequences generalize further to include magic balls, which cancel with standard balls when they meet at the same height. In this paper, we establish a combinatorial equivalence between positive roots of a Lie algebra and throws during a juggling sequence. This provides a juggling framework to calculate Kostant’s partition functions, and a partition function framework to compute the number of juggling sequences. From this equivalence we provide a broad range of consequences and applications connecting this work to polytopes, posets, positroids, and weight multiplicities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

h :

Height of a juggling state

m :

Hand capacity of a juggling sequence

n :

Length of a juggling sequence

p :

Multiset of positive roots

r :

Rank of Lie algebra

\(s_i\) :

Entry of juggling sequence vector

\(A_r\) :

Lie algebra \(\mathfrak {sl}_{r+1}(\mathbb {C})\)

\(B_r\) :

Lie algebra \(\mathfrak {so}_{2r+1}(\mathbb {C})\)

\(C_r\) :

Lie algebra \(\mathfrak {sp}_{2r}(\mathbb {C})\)

\(D_r\) :

Lie algebra \(\mathfrak {so}_{2r}(\mathbb {C})\)

\(K(\mu )\) :

Number of partitions of \(\mu \) using positive roots of type A

\(K_\Lambda (\mu )\) :

Number of partitions of \(\mu \) using roots from \(\Lambda \)

\(P(\mu )\) :

Set of partitions of \(\mu \)

\(P_\Lambda (\mu )\) :

Set of partitions of \(\mu \) using roots from \(\Lambda \)

\(Q_\Lambda (\mu )\) :

Subset of \(P_\Lambda (\mu )\) subject to a hand capacity constraint

S :

Juggling sequence

\(T_{i,j}\) :

A throw at time i to height j

\(\mathcal {T}\) :

A set of throws

\(\mathcal {T}_r\) :

Set of all throws that land by time \(r+1\)

\(\mathbf {a}\) :

Initial state of a juggling sequence

\(\mathbf {b}\) :

Terminal state of a juggling sequence

\(\mathbf {s}\) :

Juggling state

\(\mathbf {t}\) :

Reflected juggling state

\(\alpha _i\) :

Simple roots of a Lie algebra

\({\tilde{\alpha }}\) :

Highest root of a Lie algebra

\(\beta _i\) :

A positive root

\(\delta (S)\) :

Net change vector of S

\(\varepsilon _i\) :

Standard basis vectors

\(\mu \) :

Weight of a Lie algebra

\(\Gamma \) :

Function between (multisets of) positive roots and (multisets of) throws

\(\Delta \) :

Simple roots of a Lie algebra

\(\Phi \) :

Root system of a Lie algebra

\(\Phi ^+\) :

Positive roots of a Lie algebra

\(\Lambda \) :

Subset of \(\Phi ^+\)

\(\mathrm {JS}\) :

Set of juggling sequences

\(\mathsf {js}\) :

Number of juggling sequences

\(\mathrm {JS}_\mathcal {T}\) :

Set of juggling sequences using throws from \(\mathcal {T}\)

\(\mathsf {js}_\mathcal {T}\) :

Number of juggling sequences using throws from \(\mathcal {T}\)

\(\mathrm {LJS}\) :

Set of labeled juggling sequences

\(\mathsf {ljs}\) :

Number of labeled juggling sequences

\(\mathrm {PJS}\) :

Juggling poset

\(\mathrm {RJS}\) :

Juggling polytope/set of real-valued juggling sequences

\((\cdot ,\cdot ,\cdot )\) :

Parentheses denote a juggling sequence

\(\langle \cdot ,\cdot ,\cdot \rangle \) :

Angle brackets denote a juggling state

\({[}\cdot ,\cdot ,\cdot {]}\) :

Square brackets denote the components of a labeled juggling state

References

  1. Armstrong, D.,Garsia, A.,Haglund, J.,Rhoades, B.,Sagan, B., Combinatorics of Tesler matrices in the theory of parking functions and diagonal harmonics, J. Comb., 3, (2012), no. 3, 451–494 https://doi.org/10.4310/JOC.2012.v3.n3.a7

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayyer, A., Bouttier, J., Corteel, S., Nunzi, F., Multivariate juggling probabilities, Proceedings of the 25th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms,(2014), pp. 1–12

  3. Baldoni, W., Vergne, M., Kostant partitions functions and flow polytopes, Transform. Groups 13, (2008), no.3-4, 447–469, https://doi.org/10.1007/s00031-008-9019-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Baldoni, M. W., Beck, M., Cochet, C., Vergne, M., Volume computation for polytopes and partition functions for classical root systems, Discrete Comput. Goem., 35, (2006), no. 4, 551–595 Code available at www.math.polytechnique.fr/cmat/vergne/. Accessed 9 Jan 2020

  5. Beck, M., Robins, S., Computing the continuous discretely. Undergraduate texts in mathematics (2nd edition), Springer, New York, (2015). https://doi.org/10.1007/978-1-4939-2969-6

  6. Benedetti, C., González D’León, R. S., Hanusa, C. R. H., Harris, P., Khare, A., Morales, A., Yip, M., A combinatorial model for computing volumes of flow polytopes, Trans. Amer. Math. Soc., 372,(2019), 3369–3404, https://doi.org/10.1090/tran/7743

    Article  MathSciNet  MATH  Google Scholar 

  7. Buhler, J., Eisenbud, D., Graham, R., Wright, C., Juggling drops and descents, Amer. Math. Monthly, 101, (1994), no. 6, 507–519 https://doi.org/10.2307/2975316

    Article  MathSciNet  MATH  Google Scholar 

  8. Butler, S., Private email conversation, June 2018

  9. Butler, S., Choi, J., Kim, K., Seo, K., Enumerating multiplex juggling patterns, J. Integer Seq., 22, (2019), no.1, Art. 19.1.7, 21

  10. Butler, S., Graham, R., Enumerating (Multiplex) Juggling Sequences, Ann. Comb., 13, (2010), no. 4, 413–424

    Article  MathSciNet  Google Scholar 

  11. Chan, C., Robbins, D., Yuen, D. S., On the volume of a certain polytope, Exp. Math., 9, (2000), no. 1, 91–99

    Article  MathSciNet  Google Scholar 

  12. Chang, K., Harris, P. E., Insko, E., Kostant’s weight multiplicity formula and the Fibonacci and Lucas numbers, J. Comb., 11, (2020), no.1, 141–167. https://doi.org/10.4310/JOC.2020.v11.n1.a7

    Article  MathSciNet  MATH  Google Scholar 

  13. Chung, F., Graham, R., Primitive juggling sequences, Amer. Math. Monthly, 115, (2008), no. 3, 185–194, https://doi.org/10.1080/00029890.2008.11920516

    Article  MathSciNet  MATH  Google Scholar 

  14. Corteel, S.,Kim, J. S.,Mészáros, K., Flow polytopes with Catalan volumes, C. R. Math. Acad. Sci. Paris, 355, (2017), no. 3, 248–259, https://doi.org/10.1016/j.crma.2017.01.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Corteel, S.,Kim, J. S.,Mészáros, K., Volumes of Generalized Chan–Robbins–Yuen Polytopes, Discrete Comput. Geom., 2019, https://doi.org/10.1007/s00454-019-00066-1

  16. Ehrenborg, R., Determinants involving \(q\)-Stirling numbers, Adv. in Appl. Math., 31, (2003), no. 4, 630–642, https://doi.org/10.1016/S0196-8858(03)00029-0

  17. Ehrenborg, R. , Readdy, M., Juggling and applications to \(q\)-analogues, Proceedings of the 6th Conference on Formal Power Series and Algebraic Combinatorics (New Brunswick, NJ, 1994), 1996, pp. 107–125, https://doi.org/10.1016/S0012-365X(96)83010-X

  18. Engström, A., Leskelä, L., Varpanen, H., Geometric juggling with \(q\)-analogues, Discrete Math., 338, (2015), no. 7, 1067–1074, https://doi.org/10.1016/j.disc.2015.02.004

  19. Goodman, R., Wallach, N. R., Symmetry, Representations and Invariants, Springer, New York, 2009

    Book  Google Scholar 

  20. Haglund, J., A polynomial expression for the Hilbert series of the quotient ring of diagonal coinvariants, Adv. Math., 227, (2011), no. 5, 2092–2106, https://doi.org/10.1016/j.aim.2011.04.013

    Article  MathSciNet  MATH  Google Scholar 

  21. Harris, P. E., On the adjoint representation of \(\mathfrak{sl}_{n}\)and the Fibonacci numbers, C. R. Math. Acad. Sci. Paris, 349, (2011), 935–937, https://doi.org/10.1016/j.crma.2011.08.017

  22. Harris, P. E., Combinatorial problems related to Kostant’s weight multiplicity formula, University of Wisconsin, Milwaukee, 2012

    Google Scholar 

  23. Harris, P. E., Insko, E., Omar, M., The \(q\)-analog of Kostant’s partition function and the highest root of the simple Lie algebras, Australas. J. Combin., 71, (2018), no. I, 68-91

  24. Harris, P. E., Insko, E., Simpson, A., Computing weight \(q\)-multiplicities for the representations of the simple Lie algebras, A. AAECC, 2017, https://doi.org/10.1007/s00200-017-0346-7

  25. Harris, P. E., Inkso, E., Williams, L. K., The adjoint representation of a classical Lie algebra and the support of Kostant’s weight multiplicity formula, J. Comb., 7, (2016), no. 1, 75-116

    MathSciNet  MATH  Google Scholar 

  26. Harris, P. E., Lauber, E., Weight \(q\)-multiplicities for representations of \(\mathfrak{sp} _4(\mathbb{C} )\), Zh. Sib. Fed. Univ. Math. Phys., 10, (2017), no. 4, 494–502, https://doi.org/10.17516/1997-1397-2017-10-4-494-502

  27. Harris, P. E., Lescinsky, H., Mabie, G., Lattice patterns for the support of Kostant’s weight multiplicity formula on \(\mathfrak{sl} _{3}(\mathbb{C} )\), Minnesota Journal of Undergraduate Mathematics., 4, (June 2018), 1

    Google Scholar 

  28. P. E. Harris, M. Loving, J. Ramirez, J. Rennie, G. Rojas Kirby, E. Torres Davila, F. O. Ulysse, Visualizing the support of Kostant’s weight multiplicity formula for the rank two Lie algebras, (2019), arXiv preprint arXiv:1908.08405.pdf

  29. Hille, L., Quivers, cones and polytopes, Linear Algebra Appl., 365, (2003), 215–237

    Article  MathSciNet  Google Scholar 

  30. Jang, J., Kim, J. S., Volumes of flow polytopes related to caracol graphs, 2019, arXiv preprint arXiv:1911.10703

  31. Kapoor, K., Mészáros, K., Setiabrata, L., Counting integer points of flow polytopes, 2019, arXiv preprint arXiv:1906.05592,

  32. Knutson, A., Lam, T.,Speyer, D., Positroid varieties: juggling and geometry, Compos. Math., 149, (2013), 1710–1752

    Article  MathSciNet  Google Scholar 

  33. Kostant, B., A formula for the multiplicity of a weight, Proc. Nat. Acad. Sci. U.S.A., 44, (1958), 588–589

    Article  MathSciNet  Google Scholar 

  34. Leskelä, L., Varpanen, H., Juggler’s exclusion process, J. Appl. Probab., 49, (2012), no. 1, 266–279, https://doi.org/10.1239/jap/1331216846

    Article  MathSciNet  MATH  Google Scholar 

  35. Lidskiĭ, B. V., The Kostant function of the system of roots \(A_{n}\), Funktsional. Anal. i Prilozhen., 18, (1984), no. 1, 76–77

    Article  MathSciNet  Google Scholar 

  36. Mészáros, K., Morales, A. H., Flow polytopes of signed graphs and the Kostant partition function, Int. Math. Res. Not. IMRN, 3, (2015), 830–871, https://doi.org/10.1093/imrn/rnt212

    Article  MathSciNet  MATH  Google Scholar 

  37. Mészáros, K., Morales, A. H., Striker, J., On Flow Polytopes, Order Polytopes, and Certain Faces of the Alternating Sign Matrix Polytope, Discrete Comput. Geom., 62, (2019), no. 1, 128–163, https://doi.org/10.1007/s00454-019-00073-2

    Article  MathSciNet  MATH  Google Scholar 

  38. Liu, R. I.,Mészáros, K.,St. Dizier, A., Gelfand-Tsetlin polytopes: a story of flow and order polytopes, 2019, arXiv preprint arXiv:1903.08275

  39. Mészáros, K., Product formulas for volumes of flow polytopes, Proc. Amer. Math. Soc., 143, (2015), no.3, 937–954

    Article  MathSciNet  Google Scholar 

  40. K. Mészáros, A. H. Morales, Volumes and Ehrhart polynomials of flow polytopes, Math. Z., 293, (2019), no.3-4, 1369–1401, https://doi.org/10.1007/s00209-019-02283-z

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Mészáros,A. H. Morales,B. Rhoades, The polytope of Tesler matrices, Selecta Math. (N.S.), 23, (2017), no.1, 425–454, https://doi.org/10.1007/s00029-016-0241-2

  42. Mészáros, K.,Simpson, C.,Wellner, Z., Flow polytopes of partitions, Electron. J. Combin., 26, (2019), no. 1, Paper 1.47, 12

  43. M. Mezzarobba, B. Salvy, Effective bounds for P-recursive sequences, J. Symbolic Comput., 45, (2010), no. 10, 1075–1096

    Article  MathSciNet  Google Scholar 

  44. Polster, B., The mathematics of juggling, Springer-Verlag, New York, 2003

    MATH  Google Scholar 

  45. J. R. Schmidt and A. M. Bincer, The Kostant partition function for simple Lie algebras, Journal of Mathematical Physics, 25, (1984), 2367-2373

    Article  MathSciNet  Google Scholar 

  46. J. O’Neill, On the poset and asymptotics of Tesler matrices, Electron. J. Combin., 25, (2018), no.2, Paper 2.4, 27

  47. C. Shannon, Scientific Aspects of Juggling, (1980), Published in (Wiley 1993), 850864, Retrieved from https://www.jonglage.net/theorie/notation/siteswap-avancee/refs/Claude%20Shannon%20-%20Scientific%20Aspects%20of%20Juggling.pdf

  48. Simpson, A., Kostant’s Partition Function and Multiplex Juggling Sequences, Senior Thesis, Department of Mathematics and Statistics, Williams College, (2019), Available at https://unbound.williams.edu/theses/islandora/object/studenttheses%3A1382/ accessed 12-June-2019

  49. Stadler, J. D., Juggling and vector compositions, Discrete Math., 258, (2002), no. 1-3, 179–191, https://doi.org/10.1016/S0012-365X(02)00269-8

    Article  MathSciNet  MATH  Google Scholar 

  50. Stanley, R. P., Enumerative combinatorics. Volume 1,Second, Cambridge Studies in Advanced Mathematics, vol.49, Cambridge University Press, Cambridge, 2012

  51. Stanley, R. P., Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol.62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin, https://doi.org/10.1017/CBO9780511609589

  52. H. Varpanen, A short publication history of juggling math, (2012), Retrieved from https://www.semanticscholar.org/paper/A-short-publication-history-of-juggling-math-Varpanen/887ab6516746828315bf534e9443e66fc531ce2e

  53. Yip, M., A Fuss-Catalan variation of the caracol flow polytope, (2019), arXiv preprint arXiv:1910.10060

  54. Zeilberger, D., Proof of a conjecture of Chan, Robbins, and Yuen, Electron. Trans. Numer. Anal, 9, (1999), 147–148

Download references

Acknowledgements

A preliminary version of these results were presented in [48]. This work was supported by the American Institute of Mathematics through their SQuaRE program. We are very appreciative of their support and funding which made this research collaboration possible. We thank Rafael González D’León and Martha Yip for fruitful discussions throughout the process. We also thank Igor Pak and Mark Wilson for their helpful suggestions in Sect. 6.2.2 as well as the anonymous referees. C. Benedetti also thanks grant FAPA of the Faculty of Science at Universidad de los Andes. A. H. Morales received support from NSF Grant DMS-1855536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamela E. Harris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benedetti, C., Hanusa, C.R.H., Harris, P.E. et al. Kostant’s Partition Function and Magic Multiplex Juggling Sequences. Ann. Comb. 24, 439–473 (2020). https://doi.org/10.1007/s00026-020-00498-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-020-00498-0

Keywords

Mathematics Subject Classification

Navigation