Skip to main content
Log in

The Numbers of Edges of 5-Polytopes with a Given Number of Vertices

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

A basic combinatorial invariant of a convex polytope P is its f-vector \(f(P)=(f_0,f_1,\dots ,f_{\dim P-1})\), where \(f_i\) is the number of i-dimensional faces of P. Steinitz characterized all possible f-vectors of 3-polytopes and Grünbaum characterized the pairs given by the first two entries of the f-vectors of 4-polytopes. In this paper, we characterize the pairs given by the first two entries of the f-vectors of 5-polytopes. The same result was also proved by Pineda-Villavicencio, Ugon and Yost independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Barnette, D.W.: The projection of the \(f\)-vectors of \(4\)-polytopes onto the \((E,S)\)-plane. Discrete Math. 10, 201–216 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barnette, D.W., Reay, J.R.: Projection of \(f\)-vectors of four-polytopes. J. Combin. Theory Ser. A 15, 200–209 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bayer, M., Lee, C.W.: Combinatorial aspects of convex polytopes. In: Gruber, P.M., Wills, J.M. (eds.) Handbook of Convex Geometry, Vol. A, B, pp. 485–534. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  4. Brøndsted, A.: An Introduction to Convex Polytopes. Graduate Texts in Mathematics, Vol. 90. Springer, New York (1983)

    Book  MATH  Google Scholar 

  5. Fogelsanger, A.: The Generic Rigidity of Minimal Cycles. Ph.D. Thesis. Cornell University, New York (1988)

    Google Scholar 

  6. Fukuda, K., Miyata, H., Moriyama, S.: Classification of Oriented Matroids. http://www-imai.is.s.u-tokyo.ac.jp/~hmiyata/oriented_matroids/. Accessed 5 Feb 2019

  7. Grünbaum, B.: Convex Polytopes. Pure and Applied Mathematics, Vol. 16. Wiley Interscience, New York (1967)

    Google Scholar 

  8. Kalai, G.: Rigidity and the lower bound theorem. I. Invent. Math. 88(1), 125–151 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pineda-Villavicencio, G., Ugon, J., Yost, D.: The excess degree of a polytope. SIAM J. Discrete Math. 32(3), 2011–2046 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pineda-Villavicencio, G., Ugon, J., Yost, D.: Lower bound theorems for general polytopes. Eur. J. Combin. 79, 27–45 (2019)

    Article  MathSciNet  Google Scholar 

  11. Sjöberg, H., Ziegler, G.M.: Characterizing face and flag vector pairs for polytopes. Discrete Comput. Geom. (2018). https://doi.org/10.1007/s00454-018-0044-7

  12. Stanley, R.P.: Combinatorics and Commutative Algebra, 2nd edn. Progress in Mathematics, Vol. 41. Birkhäuser, Boston (1996)

  13. Tay, T.-S.: Lower-bound theorems for pseudomanifolds. Discrete Comput. Geom. 13(2), 203–216 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, Vol. 152. Springer, New York (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Murai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kusunoki, T., Murai, S. The Numbers of Edges of 5-Polytopes with a Given Number of Vertices. Ann. Comb. 23, 89–101 (2019). https://doi.org/10.1007/s00026-019-00417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-019-00417-y

Keywords

Mathematics Subject Classification

Navigation