Skip to main content
Log in

A Multidimensional Szemerédi Theorem in the Primes via Combinatorics

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Let A be a subset of positive relative upper density of \(\mathbb {P}^d\), the d-tuples of primes. We present an essentially self-contained, combinatorial argument to show that A contains infinitely many affine copies of any finite set \(F\subseteq \mathbb {Z}^d\). This provides a natural multidimensional extension of the theorem of Green and Tao on the existence of long arithmetic progressions in the primes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The family \(\{\nu _e\}\) can be considered as a parametric family of weights in a trivial way, setting \(Z=\Omega =\{0\}\), and \(\psi (0)=1\).

References

  1. Conlon, D., Fox, J., Zhao, Y.: A relative Szemerédi theorem. Geom. Funct. Anal. 25(3), 733–762 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cook, B., Magyar, A.: Constellations in \(\mathbb{P}^d\). Int. Math. Res. Not. 2012(12), 2794–2816 (2012)

    MATH  Google Scholar 

  3. Furstenberg, H., Katznelson, Y.: An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math. 34, 275–291 (1979)

    Article  Google Scholar 

  4. Fox, J., Zhao, Y.: A short proof of the multidimensional Szemerédi theorem in the primes. Amer. J. Math. 137(4), 1139–1145 (2015)

    Article  MathSciNet  Google Scholar 

  5. Gowers, W.T.: Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math. 166(3), 897–946 (2007)

    Article  MathSciNet  Google Scholar 

  6. Gowers, W.T.: Decompositions, approximate structure, transference, and the Hahn-Banach theorem. Bull. Lond. Math. Soc. 42(4), 573–606 (2010)

    Article  MathSciNet  Google Scholar 

  7. Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. Ann. of Math. 167(2), 481–547 (2008)

    Article  MathSciNet  Google Scholar 

  8. Green, B., Tao, T.: Linear equations in primes. Ann. of Math. 171(3), 1753–1850 (2010)

    Article  MathSciNet  Google Scholar 

  9. Green, B., Tao, T.: The Möbius function is strongly orthogonal to nilsequences. Ann. of Math. 175(2), 541–566 (2012)

    Article  MathSciNet  Google Scholar 

  10. Green, B., Tao, T., Ziegler, T.: An inverse theorem for the Gowers \(U^{s+1}[N]\)-norm. Ann. of Math. 176(2), 1231–1372 (2012)

    Article  MathSciNet  Google Scholar 

  11. Goldston, D.A., Yıldırım, C. Y.: Higher correlations of divisor sums related to primes I: Triple correlations. Integers 3, #A5 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Magyar, A., Titichetrakun, T.: Corners in dense subsets of \(P^d\). Preprint

  13. Nagle, B., Rödl, V., Schacht, M.: The counting lemma for regular \(k\)-uniform hypergraphs. Random Structures Algorithms 28(2), 113–179 (2006)

    Article  MathSciNet  Google Scholar 

  14. Reingold, O., Trevisan, L., Tulsiani, M., Vadham, S.: Dense subsets of pseudorandom sets. In: 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 76-85. IEEE Computer Society, Philadelphia, PA (2008)

  15. Solymosi, J.: Note on a generalization of Roth’s theorem. In: Aronov, B., Basu, S., Pach, J., Shariv., M. (eds.) Discrete and Computational Geometry, Algorithms Combin. Vol. 25, pp. 825–827. Springer, Berlin (2003)

  16. Szemerédi, E.: On sets of integers containing no \(k\) elements in arithmetic progression. Acta Arith. 27, 199–245 (1975)

    Article  MathSciNet  Google Scholar 

  17. Tao, T.: The Gaussian primes contain arbitrarily shaped constellations. J. Anal. Math. 99, 109–176 (2006)

    Article  MathSciNet  Google Scholar 

  18. Tao, T.: Szemerédi’s regularity lemma revisited. Contrib. Discrete Math. 1(1), 8–28 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Tao, T.: A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A 113(7), 1257–1280 (2006)

    Article  MathSciNet  Google Scholar 

  20. Tao, T., Ziegler, T.: A multi-dimensional Szemerédi theorem for the primes via a correspondence principle. Israel J. Math. 207(1), 203–228 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ákos Magyar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ákos Magyar is supported by NSERC Grant 22R44824 and ERC-AdG. 321104.

Appendix A: Basic Properties of Weighted Box Norms

Appendix A: Basic Properties of Weighted Box Norms

In this appendix, we describe some basic facts about the weighted version of Gowers’s box norms defined in (1.29) for functions \(F:V_e\rightarrow \mathbb {R}\). We will assume \(e=\{1,\ldots ,d\}=:[d]\), and \(V=V_{[d]}=\mathbb {Z}_N^d\) without loss of generality. To show that these are indeed norms (for \(d\ge 2\)) let us define a multilinear form referred to as the weighted Gowers’s inner product. Let \(F_\omega :V_e\rightarrow \mathbb {R}\) for \(\omega \in \{0,1\}^e\), be a given family of functions and define

$$\begin{aligned}&\left\langle F_{\omega };\omega \in \{0,1\}^d \right\rangle _{\Box _{\nu }}\\&\quad := \mathbb {E}_{x_{[d]},y_{[d]}\in V}\prod _{\omega \in \{0,1\}^d} F_{\omega }(\omega (x_{[d]},y_{[d]}))\prod _{|I|<d}\prod _{\omega _I\in \{0,1\}^I} \nu _I(\omega _I(x_I,y_I)). \end{aligned}$$

Therefore, \(\left\langle F_{\omega };\omega \in \{0,1\}^d \right\rangle _{\Box _{\nu }}=\left\| F\right\| _{\Box _{\nu }}^{2^d}\), if \(F_\omega =F\) for all \(\omega \in \{0,1\}^e\).

Lemma A.1

(The Gowers–Cauchy–Schwartz inequality). \(|\left\langle F_{\omega }; \omega \in \{0,1\}^d \right\rangle | \le { \prod _{\omega _{[d]}} } \left\| F_{\omega }\right\| _{\Box ^d_{\nu }}.\)

Proof

We will use the Cauchy–Schwartz inequality several times and the linear form condition. We have

$$\begin{aligned}&\left\langle F_{\omega } ; \omega \in \{0,1\}^d \right\rangle _{\Box _{\nu }^d}\\&\quad =\mathbb {E}_{x_{[2,d]},y_{[2,d]}}\left( \left( \prod _{|I|<d,1 \notin I} \prod _{\omega _I} \nu _I(\omega _I(x_I,y_I)) \right) ^{1/2} \right. \\&\qquad \quad \times \left( \mathbb {E}_{x_1} \nu (x_1) \prod _{\omega _{[2,d]}} F_{\omega _{(0,[2,d])}}(x_1,\omega _{[2,d]}(x_{[2,d]},y_{[2,d]}))\right) \\&\qquad \quad \times \prod _{|I|<d-1,1 \notin I}\nu _{\{1\} \cup I}(x_1,\omega _I(x_I,y_I)) \left( \prod _{|I|<d,1 \notin I} \prod _{\omega _I} \nu _I({\omega _I}(x_I,y_I)) \right) ^{1/2} \\&\qquad \quad \times \left( \mathbb {E}_{y_1} \nu (y_1) \prod _{\omega _{[2,d]}} F_{\omega _{(1,[2,d])}}(y_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]}))\right) \nonumber \\&\qquad \quad \left. \times \prod _{|I|<d-1,1 \notin I}\nu _{\{1\} \cup I}(y_1,{\omega _I}(x_I,y_I))\right) . \end{aligned}$$

Applying the Cauchy–Schwartz inequality in the \(x_1\) variable, one has

$$\begin{aligned} \left| \left\langle F_{\omega } ; \omega \in \{0,1\}^d \right\rangle _{\Box _{\nu }^d} \right| ^2 \le A \cdot B \end{aligned}$$

here,

$$\begin{aligned} A&=\mathbb {E}_{x_{[2,d]},y_{[2,d]}} \left( \prod _{|I|<d,1 \notin I} \prod _{\omega _I} \nu _I({\omega _I}(x_I,y_I))\right. \\&\quad \quad \times \mathbb {E}_{x_1,y_1}\nu (x_1)\nu (y_1) \prod _{\omega _{[2,d]}} F_{\omega _{(0,[2,d])}}(x_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]}))\\&\quad \quad \times \, F_{\omega _{(0,[2,d])}}(y_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]})) \\&\quad \quad \left. \times \prod _{|I|<d-1,1 \notin I}\nu _{\{1\} \cup I}(x_1,{\omega _I}(x_I,y_I)) \right) = \left\langle F^{(0)}_{\omega }({\omega }(x_{[d]},y_{[d]})) \right\rangle _{\Box ^d_{\nu }}, \end{aligned}$$

where

$$\begin{aligned} F^{(0)}_{(0,\omega _{[2,d]})}(x_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]}))&= F^{(0)}_{(1,\omega _{[2,d]})}(y_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]}))\\&:=F(x_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]})) \end{aligned}$$

for any \(\omega _{[2,d]}\). Similarly

$$\begin{aligned} B =\left\langle F^{(1)}_{\omega }({\omega }(x_{[d]},y_{[d]})) \right\rangle _{\Box ^d_{\nu }}, \end{aligned}$$

where

$$\begin{aligned} F^{(1)}_{(0,\omega _{[2,d]})}(x_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]}))&= F^{(1)}_{(1,\omega _{[2,d]})}(y_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]}))\\&:=F(y_1,{\omega _{[2,d]}}(x_{[2,d]},y_{[2,d]})) \end{aligned}$$

for any \(\omega _{[2,d]}.\) In the same way, applying the Cauchy–Schwartz inequality in \(x_2\) variable, we end up with

$$\begin{aligned} |\left\langle F_{\omega }; \omega \in \{0,1\}^d \right\rangle _{\Box ^d_{\nu }}| \le \prod _{\omega _{[0,1]}}\left\langle F^{\omega _{[0,1]}}_{\omega }; \omega \in \{0,1\}^d \right\rangle _{\Box ^d_{\nu }} \end{aligned}$$

and continuing this way with \(x_3,\ldots ,x_d\) variables, we end up with

$$\begin{aligned} |\left\langle F_{\omega }; \omega \in \{0,1\}^d \right\rangle _{\Box ^d_{\nu }}| \le \prod _{\omega \in \{0,1\}^d}\left\langle F_\omega ,\ldots ,F_\omega \right\rangle _{\Box ^d_{\nu }} = \prod _{\omega \in \{0,1\}^d} \left\| F_{\omega } \right\| ^{2^d}_{\Box ^d_{\nu }}. \end{aligned}$$

\(\square \)

Corollary A.1

\(\left\| \cdot \right\| _{{\Box ^d_{\nu }}}\) is a semi-norm for \(d\ge 1\).

Proof

By the Gowers–Cauchy–Schwartz inequality, we have that \(\Vert F\Vert _{\Box _\nu }\ge 0\); moreover

$$\begin{aligned} \left\| F+G \right\| _{\Box _{\nu }^d}^{2^d}&= \left\langle F+G,\ldots ,F+G \right\rangle _{\Box _{\nu }^d} \\&=\sum _{\omega \in \{0,1\}^d}\left\langle h^{\omega _1},\ldots ,h^{\omega _d} \right\rangle _{\Box _{\nu }^d},\quad h^{\omega }={\left\{ \begin{array}{ll} F, &{}\quad \omega =0 \\ G, &{}\quad \omega =1 \end{array}\right. }\\&\le \sum _{\omega \in \{0,1\}^d} \left\| h^{\omega _1} \right\| _{\Box _{\nu }^d}\ldots \left\| h^{\omega _d} \right\| _{\Box _{\nu }^d} =(\left\| F \right\| _{\Box _{\nu }^d}+\left\| G \right\| _{\Box _{\nu }^d})^{2^d}. \end{aligned}$$

In addition, it follows directly from the definition that \(\left\| \lambda F\right\| _{\Box _{\nu }^d}^{2^d}=\lambda ^{2^d}\left\| f \right\| _{\Box _{\nu }^d}^{2^d}\); hence, \(\left\| \lambda F \right\| _{\Box _{\nu }^d}=|\lambda |\left\| F \right\| _{\Box _{\nu }^d}.\) \(\square \)

Proof of Proposition 1.1

Let \(\mathcal {H}'=\{f\in \mathcal {H};\ |f|<d\)}, and write the left side of (1.26) as

$$\begin{aligned} \mathbb {E}=\mathbb {E}_{x\in V_J}\prod _{e\in \mathcal {H}_d} F_e(x_e)\prod _{f\in \mathcal {H}'}\nu _f(x_f). \end{aligned}$$

Fix \(e_0=[d]\) and write \(e_j:=[d+1]\backslash \{j\}\) for the rest of the faces. The idea is to apply the Cauchy–Schwartz inequality successively in the \(x_1,x_2,\ldots ,x_d\) variables to eliminate the functions \(F_{e_1}\le \nu _{e_1},\ldots ,F_{e_d}\le \nu _{e_d}\), using the linear form condition at each step. Using \(F_{e_1}\le \nu _{e_1}\), we have

$$\begin{aligned} |E|\le \mathbb {E}_{x_2,\ldots ,x_{d+1}} \nu _{e_1}(x_1)\prod _{1\notin f\in \mathcal {H}'} \nu _f(x_f)\left| \mathbb {E}_{x_1}\prod _{j\ne 2}F_{e_j}(x_j)\prod _{1\in f\in \mathcal {H}'}\nu _f(x_f)\right| . \end{aligned}$$

By the linear form condition \(\mathbb {E}_{x_2,\ldots ,x_{d+1}} \nu _{e_1}(x_1)\prod _{1\notin f\in \mathcal {H}'} \nu _f(x_f)=1+o_{N \rightarrow \infty }(1)\), thus by the Cauchy–Schwartz inequality,

$$\begin{aligned} E^2&\lesssim \mathbb {E}_{x_2,\ldots ,x_{d+1}} \nu _{e_1}(x_1)\prod _{1\notin f\in \mathcal {H}'} \nu _f(x_f)\ \mathbb {E}_{x_1,y_1} \prod _{j\ne 2}F_{e_j}(x_1,x_{e_j\backslash \{1\}})F_{e_j}(y_1,x_{e_j\backslash \{1\}})\nonumber \\&\quad \times \, \prod _{1\in f\in \mathcal {H}'}\nu _f(y_1,x_{f\backslash \{1\}})\,\nu _f(x_1,x_{f\backslash \{1\}}). \end{aligned}$$
(A.1)

Note that, what happened is that we have replaced the function \(F_{e_1}\) by the measure \(\nu _{e_1}\), doubled the variable \(x_1\) to the pair of variables \((x_1,y_1)\) and also doubled each factor of the form \(G_e(x_e)\) (which is either \(F_e(x_e)\) or \(\nu _e(x_e)\), for \(e\in \mathcal {H}\)) depending on the \(x_1\) variable. To keep track of these changes as we continue with the rest of that variables, let us introduce some notations. Let \(g\subseteq [d]\) and for a function \(G_e(x_e)\) define

$$\begin{aligned} G_e^*(x_{e\cap g},y_{e\cap g},x_{e\backslash g}) := \prod _{\omega _e\in \{0,1\}^{e\cap g}} G_e(\omega _e(x_{e\cap g},y_{e\cap g}),x_{e\backslash g}). \end{aligned}$$
(A.2)

We claim that after applying the Cauchy–Schwartz inequality in the \(x_1,\ldots ,x_i\) variables, we have with \(g=[i]\)

$$\begin{aligned} E^{2^i}&\lesssim \mathbb {E}_{x_{[i]},y_{[i]},x_{J\backslash [i]}} \prod _{j\le i} \nu _{e_j}^*(x_{[i]\cap e_j},y_{[i]\cap e_j},x_{e_j\backslash [d]}) \prod _{j>i} F_{e_j}^* (x_{[i]\cap e_j}, y_{[i]\cap e_j}, x_{e_j\backslash [d]})\nonumber \\&\quad \times \prod _{f\in \mathcal {H}'} \nu _f^* (x_{f\cap [i]},y_{f\cap [i]},x_{f\backslash [i]}). \end{aligned}$$
(A.3)

For \(i=1\), this can be seen from (A.1). Note that the linear forms appearing in any of these factors are pairwise linearly independent as our system is well-defined. Assuming it holds for i separating the factors independent of the \(x_{i+1}\) variable, replacing the function \(F_{e_{i+1}}\) with \(\nu _{e_{i+1}}\), and applying the Cauchy–Schwartz inequality we double the variable \(x_{i+1}\) to the pair \((x_{i+1},y_{i+1})\) and each factor \(G^*_e(x_{e\cap [i]},y_{e\cap [i]},x_{e\backslash [i]})\) depending on it, to obtain the factor \(G^*_e(x_{e\cap [i+1]},y_{e\cap [i+1]},x_{e\backslash [i+1]})\); thus, the formula holds for \(i+1\). After finishing this process, we have by (A.2) and (A.3)

$$\begin{aligned} E^{2^d}\lesssim & {} \mathbb {E}_{x_{[d]},y_{[d]}} \prod _{\omega \in \{0,1\}^d} F_{e_0} (\omega (x_{[d]},y_{[d]}))\\&\times \, \prod _{f\subseteq [d],f\ne e_0}\prod _{\omega _f\in \{0,1\}^f} \nu _f(\omega _f(x_f,y_f))\,\mathcal {W}(x_{[d]},y_{[d]}), \end{aligned}$$

where

$$\begin{aligned} \mathcal {W}(x_{[d]},y_{[d]})=\mathbb {E}_{x_{d+1}} \prod _{d+1\in e\in \mathcal {H}} \prod _{\omega _e\in \{0,1\}^{e\cap [d]}} \nu _e (\omega _e (x_{e\cap [d]},y_{e\cap [d]},x_{e\backslash [d]})). \end{aligned}$$

Thus, as \(F_{e_0}\le \nu _{e_0}\), to prove (1.26), it is enough to show that

$$\begin{aligned} \mathbb {E}_{x_{[d]},y_{[d]}} \prod _{f\subseteq [d]}\prod _{\omega _f\in \{0,1\}^f} \nu _f(\omega _f(x_f,y_f))\,|\mathcal {W}(x_{[d]},y_{[d]})-1|=o_{N \rightarrow \infty }(1). \end{aligned}$$

This, similarly as in [7], can be done with one more application of the Cauchy–Schwartz inequality leading to four terms involving the “big” weight functions \(\mathcal {W}\) and \(\mathcal {W}^2\). Each term is, however, \(1+o_{N \rightarrow \infty }(1)\) by the linear form condition, as the underlying linear forms are pairwise linearly independent. Indeed, the forms \(L_f(\omega _f(x_f,y_f))\) are pairwise linearly independent for \(f\subseteq [d]\), and depend on a different set of variables rather than the forms \(L_e(\omega _e (x_{e\cap [d]},y_{e\cap [d]},x_{e\backslash [d]}))\) for \(e\nsubseteq [d]\) defining the weight function \(\mathcal {W}\). The new forms appearing in \(\mathcal {W}^2\) are copies of the forms in \(\mathcal {W}\) with the \(x_{d+1}\) variable replaced by a new variable \(y_{d+1}\) hence are independent of each other and the rest of the forms. This proves the proposition. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, B., Magyar, Á. & Titichetrakun, T. A Multidimensional Szemerédi Theorem in the Primes via Combinatorics. Ann. Comb. 22, 711–768 (2018). https://doi.org/10.1007/s00026-018-0402-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-018-0402-4

Keywords

Mathematics Subject Classification

Navigation