Skip to main content
Log in

Permutation Totally Symmetric Self-Complementary Plane Partitions

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

Alternating sign matrices and totally symmetric self-complementary plane partitions are equinumerous sets of objects for which no explicit bijection is known. In this paper, we identify a subset of totally symmetric self-complementary plane partitions corresponding to permutations by giving a statistic-preserving bijection to permutation matrices, which are a subset of alternating sign matrices. We use this bijection to define a new partial order on permutations, and prove this new poset contains both the Tamari lattice and the Catalan distributive lattice as subposets. We also study a new partial order on totally symmetric self-complementary plane partitions arising from this perspective and show that this is a distributive lattice related to Bruhat order when restricted to permutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrews G.: Plane partitions. V. The TSSCPP conjecture. J. Combin. Theory Ser. A 66(1), 28–39 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayyer, A., Cori, R., Gouyou-Beauchamps, D.: Monotone triangles and 312 pattern avoidance. Electron. J. Combin. 18(2), #P26 (2011)

  3. Behrend R.: Multiply-refined enumeration of alternating sign matrices. Adv. Math. 245, 439–499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Behrend R.E., Di Francesco P., Zinn-Justin P.: On the weighted enumeration of alternating sign matrices and descending plane partitions. J. Combin. Theory Ser. A 119(2), 331–363 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bettinelli, J.: A simple explicit bijection between (n, 2)-Gog and Magog trapezoids. Sém. Lothar. Combin. 75, Art. B75e (2015)

  6. Björner A., Brenti F.: Combinatorics of Coxeter Groups Grad. Texts in Math. Vol. 231. Springer, New York (2005)

    MATH  Google Scholar 

  7. Bressoud D.M.: Proofs and Confirmations. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  8. Cheballah, H., Biane, P.: Gog and Magog triangles, and the Schützenberger involution. Sém. Lothar. Combin. 66, Art. B66d (2011/12)

  9. Cheong, O.: The Ipe extensible drawing editor (Version 7). http://ipe.otfried.org/ (2015)

  10. Di Francesco P., Zinn-Justin P.: Inhomogeneous model of crossing loops and multidegrees of some algebraic varieties. Comm. Math. Phys. 262(2), 459–487 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Francesco, P.: Integrable combinatorics. In: Jensen, A. (ed.) XVIIth International Congress on Mathematical Physics, pp. 29–51. World Sci. Publ., Hackensack, NJ (2014)

  12. Di Francesco P.: Totally symmetric self-complementary plane partitions and the quantum Knizhnik-Zamolodchikov equation: a conjecture. J. Stat. Mech. Theory Exp. 2006(9), P09008 (2006)

    Article  MathSciNet  Google Scholar 

  13. Doran, W.F, IV: A connection between alternating sign matrices and totally symmetric self-complementary plane partitions. J. Combin. Theory Ser. A 64(2), 289–310 (1993)

  14. Elkies N., Kuperberg G., Larsen M., Propp J.: Alternating-sign matrices and domino tilings I. J. Algebraic Combin. 1(2), 111–132 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fonseca, T., Zinn-Justin, P.: On the doubly refined enumeration of alternating sign matrices and totally symmetric self-complementary plane partitions. Electron. J. Combin. 15(1), #81, (2008)

  16. Huang S., Tamari D.: Problems of associativity: a simple proof for the lattice property of systems ordered by a semi-associative law. J. Combin. Theory Ser. A 13, 7–13 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, J.S.: TiKZ code for plane partitions. Available at http://www.texample.net/tikz/examples/plane-partition/

  18. Kuperberg G.: Another proof of the ASM conjecture. Internat. Math. Res. Notices 1996(3), 139–150 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lascoux, A., Schützenberger, M.-P.: Treillis et bases des groupes de Coxeter. Electron. J. Combin. 3(2), #R27 (1996)

  20. Mills W.H., Robbins D.P., Rumsey H., Rumsey H.: Alternating sign matrices and descending plane partitions. J. Combin. Theory Ser. A 34(3), 340–359 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mills W.H., Robbins D.P., Rumsey H. Jr.: Proof of the Macdonald conjecture. Invent. Math. 66(1), 73–87 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mills W.H., Robbins D.P., Rumsey H. Jr.: Self complementary totally symmetric plane partitions. J. Combin. Theory Ser. A 42(2), 277–292 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Müller-Hoissen F., Pallo J.M., Stasheff J.: Associahedra, Tamari lattices and Related Structures Progr. Math.Vol. 299. Birkhäuser Boston Inc, Boston, MA (2012)

    Book  MATH  Google Scholar 

  24. Propp, J.: The many faces of alternating-sign matrices. In: Discrete Models: Combinatorics, Computation, and Geometry, Discrete Mathematics & Theoretical Computer Science Proceedings, AA., pp. 43–58. Maison Inform. Math. Discrèt. (MIMD), Paris (2001)

  25. Robbins D., Rumsey H. Jr.: Determinants and alternating sign matrices. Adv. Math. 62(2), 169–184 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stein, W.A. et al.: Sage Mathematics Software (Version 6.5). The Sage Development Team, http://www.sagemath.org (2015)

  27. The Sage-Combinat community. Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics. http://combinat.sagemath.org (2008)

  28. Stanley R.: Enumerative Combinatorics Volume 1. Second edition, Cambridge Stud. Adv. Math. Vol. 49. Cambridge University Press, Cambridge. (2012)

    Google Scholar 

  29. Stanley R.: Weyl groups, the hard Lefschetz theorem, and the Sperner property. SIAM J. Algebraic Discrete Methods, 1(2), 168–184 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  30. Striker J.: A direct bijection between descending plane partitions with no special parts and permutation matrices. Discrete Math. 311(21), 2581–2585 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Striker J., Williams N.: Promotion and rowmotion. European J. Combin. 33(8), 1919–1942 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Striker, J.: The toggle group, homomesy, and the Razumov-Stroganov correspondence. Electron. J. Combin. 22(2), #P2.57 (2015)

  33. Striker J.: A unifying poset perspective on alternating sign matrices, plane partitions, Catalan objects, tournaments, and tableaux. Adv. Appl. Math. 46(1-4), 583–609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeilberger, D.: Proof of the alternating sign matrix conjecture. Electron. J. Combin. 3(2), #R13 (1996)

  35. Zinn-Justin P., Di Francesco P.: Quantum Knizhnik-Zamolodchikov equation, totally symmetric self-complementary plane partitions and alternating sign matrices. Theoret. Math. Phys. 154(3), 331–348 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Striker.

Additional information

The author is supported in part by the National Security Agency grant number H98230-15-1-0041, North Dakota EPSCoR grant number IIA-1355466, and the NDSU Advance FORWARD program sponsored by the National Science Foundation HRD-0811239.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Striker, J. Permutation Totally Symmetric Self-Complementary Plane Partitions. Ann. Comb. 22, 641–671 (2018). https://doi.org/10.1007/s00026-018-0394-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-018-0394-0

Mathematics Subject Classification

Keywords

Navigation