Skip to main content
Log in

Dynamic Source Model for the 2011 Tohoku Earthquake in a Wide Period Range Combining Slip Reactivation with the Short-Period Ground Motion Generation Process

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper describes a validated dynamic rupture model of the 2011 Tohoku earthquake that reproduces both long-period (20–100 s) and short-period (3–20 s) ground motions. In order to reproduce the observed large slip area (slip asperity), we assign a large Dc (slip critical distance) area following kinematic source inversion results. Sufficiently large slip is achieved through rupture reactivation by the double-slip-weakening friction model. In order to reproduce the strong-motion generation areas (SMGAs), we assign short Dc and large stress-drop areas following empirical Green’s function (EGF) simulation results, which indicate that, although more distant from the hypocenter, SMGA1 ruptured earlier than SMGA2 or SMGA3, which are closer to the hypocenter. This observation is confirmed by the backprojection method. In order to reproduce this important feature in dynamic simulation results, we introduce a chain of small high stress-drop patches between the hypocenter and SMGA1. By systematic adjustment of stress drops and Dc, the rupture reproduces the observed sequence and timing of SMGA ruptures and the final slip derived by kinematic models. This model also reproduces the multiseismic wavefront observed from strong ground motion data recorded along the Pacific coast of the Tohoku region. We compare the velocity waveforms recorded at rock sites along the coastline with one-dimensional (1D) synthetic seismograms for periods of 20–100 s. The fit is very good at stations in the northern and central areas of Tohoku. We also perform finite-difference method (FDM) simulations for periods of 3–20 s, and confirm that our dynamic model also reproduces wave envelopes. Overall, we are able to validate the rupture process of the Tohoku earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Asano, K., & Iwata, T. (2012). Source model for strong ground motion generation in the frequency range 0.1–10 Hz during the 2011 Tohoku earthquake. Earth Planets Space,64, 1111.

    Article  Google Scholar 

  • Avouac, J.-P., Meng, L., Wei, S., Wang, T., & Ampuero, J. P. (2015). Lower edge of locked main Himalayan thrust unzipped by the 2015 Gorkha earthquake. Nature Geoscience,8, 708–711. https://doi.org/10.1038/ngeo2518.

    Article  Google Scholar 

  • Beroza, G. C., & Mikumo, T. (1996). Short slip duration in dynamic rupture in the presence of heterogeneous fault properties. Journal of Geophysical Research,101, 22449.

    Article  Google Scholar 

  • Bouchon, M. (1981). A simple method to calculate Green’s function for elastic layered media. Bulletin of the Seismological Society of America,71, 959.

    Google Scholar 

  • Chen, X., Madden, A., & Reches, Z. (2017). Friction evolution of granitic faults: Heating controlled transition from powder lubrication to frictional melt. Journal of Geophysical Research,122, 9275.

    Google Scholar 

  • Fukuyama, E., Ishida, M., Dreger, D. S., & Kawai, H. (1998). Automated seismic moment tensor determination by using on-line broadband seismic waveforms. Zisin (Journal Seismological Society of Japan),51(2), 149–156. (In Japanese with English abstract).

    Article  Google Scholar 

  • Galvez, P., Ampuero, J.-P., Dalguer, L. A., Somala, S. N., & Nisse-Meyer, T. F. (2014). Dynamic earthquake rupture modeled with an unstructured 3D spectral element method applied to the 2011 M9 Tohoku earthquake. Geophysical Journal International,198(2), 1222–1240.

    Article  Google Scholar 

  • Galvez, P., Dalguer, L. A., Ampuero, J.-P., & Giardini, D. (2016). Rupture reactivation during the 2011 M w 9.0 Tohoku earthquake: Dynamic rupture and ground-motion simulations. Bulletin of the Seismological Society of America,106, 819.

    Article  Google Scholar 

  • Galvez, P., Petukhin, A., Irikura, K., & Somerville, P. (2015). Characteristics and waveform simulation for dynamic rupture model of the 2011 Tohoku earthquake with deep SMGAs. In Japan Geoscience Union Meeting 2015, Chiba, Japan, presentation SSS02–10, http://www2.jpgu.org/meeting/2015/PDF2015/S-SS02_O_e.pdf. Accessed 21 July 2018.

  • Graves, R. W. (1996). Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bulletin of the Seismological Society of America,86, 1091.

    Google Scholar 

  • Guatteri, M., Mai, P. M., Beroza, G. C., & Boatwright, J. (2003). Strong ground-motion prediction from stochastic? dynamic source models. Bulletin of the Seismological Society of America,93, 301.

    Article  Google Scholar 

  • Guo, Y., Koketsu, K., & Miyake, H. (2016). Propagation mechanism of long-period ground motions for offshore earthquakes along the Nankai Trough: Effects of the accretionary wedge. Bulletin of the Seismological Society of America,106, 1176.

    Article  Google Scholar 

  • Gusev, A. A., Guseva, E. M., & Panza, G. F. (2006). Correlation between local slip rate and local high-frequency seismic radiation in an earthquake fault. Pure and Applied Geophysics,163, 1305. https://doi.org/10.1007/s00024-006-0068-4.

    Article  Google Scholar 

  • Gusman, A. R., Tanioka, Y., Sakai, S., & Tsushima, H. (2012). Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth and Planetary Science Letters,341–344, 234. https://doi.org/10.1016/j.epsl.2012.06.006.

    Article  Google Scholar 

  • Hartzell, S. H. (1978). Earthquake aftershocks as Green’s functions. Geophysical Research Letters,5, 1.

    Article  Google Scholar 

  • Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors,64, 1.

    Article  Google Scholar 

  • Hisada, Y. (2000). A theoretical omega-square model considering the spatial variation on slip and rupture velocity. Bulletin of the Seismological Society of America,90, 387.

    Article  Google Scholar 

  • Hisada, Y. (2001). A theoretical omega-square model considering the spatial variation on slip and rupture velocity II. Case for a two-dimensional source model. Bulletin of the Seismological Society of America,91, 651.

    Article  Google Scholar 

  • Huang, Y., & Ampuero, J. P. (2011). Pulse-like ruptures induced by low-velocity fault zones. Journal of Geophysical Research,116, B12307. https://doi.org/10.1029/2011JB008684.

    Article  Google Scholar 

  • Huang, Y., Ampuero, J.-P., & Kanamori, H. (2014). Slip-weakening models of the 2011 Tohoku-oki earthquake and constraints on stress drop and fracture energy. Pure and Applied Geophysics,171, 2555. https://doi.org/10.1007/s00024-013-0718-2.

    Article  Google Scholar 

  • Huang, Y., Meng, L., & Ampuero, J. P. (2012). A dynamic model of the frequency-dependent rupture process of the 2011 Tohoku-Oki earthquake. Earth Planets Space,64(12), 1061–1066. https://doi.org/10.5047/eps.2012.05.011.

    Article  Google Scholar 

  • Ide, S., & Aochi, H. (2013). Historical seismicity and dynamic rupture process of the 2011 Tohoku-Oki earthquake. Tectonophysics,600, 1. https://doi.org/10.1016/j.tecto.2012.10.018.

    Article  Google Scholar 

  • Irikura, K.(1986). Prediction of strong acceleration motion using empirical Green’s function, In Proc. 7th Japan Earthq. Eng. Symp., Tokyo, pp 151–156.

  • Irikura, K., & Miyake, H. (2001). Prediction of strong ground motions for scenario earthquakes. Journal of Geography,110, 849. https://doi.org/10.5026/jgeography.110.6_849. (In Japanese with English abstract).

    Article  Google Scholar 

  • Irikura, K., & Miyake, H. (2011). Recipe for predicting strong ground motion from crustal earthquake scenarios. Pure and Applied Geophysics,168, 85. https://doi.org/10.1007/s00024-010-0150-9.

    Article  Google Scholar 

  • Irikura, K., Miyakoshi, K., Kurahashi, S., Petukhin, A., Yamamoto, Y., Kamae, K., & Kawabe, H. (2009). Best-fit source model for simulating strong ground motions from the 2007 Niigata-ken Chuetsu-oki earthquake. In Japan Geoscience Union Meeting 2009, Chiba, Japan, presentation S152-007.

  • Ishii, M. (2011). High-frequency rupture properties of the M w 9.0 Off the Pacific Coast of Tohoku earthquake. Earth Planets Space,63, 609.

    Article  Google Scholar 

  • Kakehi, Y., & Irikura, K. (1997). High-frequency radiation process during earthquake faulting—envelope inversion of acceleration seismograms from the 1993 Hokkaido-Nansei-Oki, Japan, earthquake. Bulletin of the Seismological Society of America,87, 904.

    Google Scholar 

  • Kamae, K., & Kawabe, H. (2008). Source model and strong motion simulations for the 2007 Niigata-ken Chuetsu earthquake. Resource document. Kyoto University. http://www.rri.kyoto-u.ac.jp/jishin/eq/niigata_chuetsuoki_5/chuuetsuoki_20080307.pdf (In Japanese). Accessed 21 July 2018.

  • Kanamori, H., & Heaton, T. (2000). Microscopic and macroscopic physics of earthquakes, geo-complexity and the physics of earthquakes. Geophysical Monograph,120, 1.

    Google Scholar 

  • Kaneko, Y., & Shearer, P. M. (2015). Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research,120, 1053.

    Google Scholar 

  • Kawabe, H., & Kamae, K. (2013). Source modeling of the 2011 off the Pacific coast of Tohoku earthquake. Journal of Japan Association for Earthquake Engineering,13, 75. (In Japanese with English abstract).

    Article  Google Scholar 

  • Koketsu, K., Miyake, H., & Suzuki, H. (2012). Japan integrated velocity structure model version 1. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, 2012, Paper no. 1773. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_1773.pdf. Accessed 21 July 2018.

  • Kubo, H., Asano, K., Iwata, T., & Aoi, S. (2013). Period dependence on source process of the 2011 Tohoku earthquake by multi period-band waveform inversions. AGU Fall Meeting, San Francisco,S43A, 2469.

    Google Scholar 

  • Kurahashi, S., & Irikura, K. (2011). Source model for generating strong ground motions during the 2011 Off the Pacific Coast of Tohoku earthquake. Earth Planets Space,63, 571.

    Article  Google Scholar 

  • Kurahashi, S., & Irikura, K. (2013). Short period source model of the 2011 M w 9.0 off the Pacific Coast of Tohoku earthquake. Bulletin of the Seismological Society of America,103, 1373.

    Article  Google Scholar 

  • Lay, T. (2017). A review of the rupture characteristics of the 2011 Tohoku-oki M w 9.1 earthquake. Tectonophysics. https://doi.org/10.1016/j.tecto.2017.09.022.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C., Koper, K. D., Hutko, A. R., Ye, L., et al. (2012). Depth-varying rupture properties of subduction zone megathrust faults. Journal of Geophysical Research,117, B04311. https://doi.org/10.1029/2011JB009133.

    Article  Google Scholar 

  • Lee, S.-J., Huang, B.-S., Ando, M., Chiu, H.-C., & Wang, J.-H. (2011). Evidence of large scale repeating slip during the 2011 Tohoku-Oki earthquake. Geophysical Research Letters,38, L19306. https://doi.org/10.1029/2011GL049580.

    Article  Google Scholar 

  • Madariaga, R. (1977). Implications of stress-drop models of earthquakes for the inversion of stress drop from seismic observations. Pure and Applied Geophysics,15, 301.

    Article  Google Scholar 

  • Meng, L., Inbal, A., & Ampuero, J.-P. (2011). A window into the complexity of the dynamic rupture of the 2011 M w 9 Tohoku-Oki earthquake. Geophysical Research Letters,38, L00G07.

    Article  Google Scholar 

  • Miyake, H., Iwata, T., & Irikura, K. (2001). Estimation of rupture propagation direction and strong motion generation area from azimuth and distance dependence of source amplitude spectra. Geophysical Research Letters,28, 2727.

    Article  Google Scholar 

  • Miyake, H., Iwata, T., & Irikura, K. (2003). Source characterization for broadband ground-motion simulation: Kinematic heterogeneous source model and strong motion generation area. Bulletin of the Seismological Society of America,93, 2531.

    Article  Google Scholar 

  • Nakahara, H. (2013). Envelope inversion analysis for high-frequency seismic energy radiation from the 2011 off the Pacific coast of Tohoku earthquake (M w 9.0). Bulletin of the Seismological Society of America,103, 1348.

    Article  Google Scholar 

  • Nakamura, H., & Miyatake, T. (2000). An approximate expression of slip velocity time functions for simulation of near-field strong ground motion. Zisin,53, 1. (In Japanese).

    Article  Google Scholar 

  • O’Hara, K., Mizoguchi, K., Shimamoto, T., & Hower, J. C. (2006). Experimental frictional heating of coal gouge at seismic slip rates: Evidence for devolatilization and thermal pressurization of gouge fluids. Tectonophysics,424(1–2), 109–118.

    Article  Google Scholar 

  • Perrin, G., Rice, J. R., & Zheng, G. (1995). Self-healing slip pulse on a frictional surface. Journal of the Mechanics and Physics of Solids,43(9), 1461–1495.

    Article  Google Scholar 

  • Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., et al. (2011). Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophysical Journal International,186, 721.

    Article  Google Scholar 

  • Petukhin, A., Kagawa, T., Koketsu, K., Miyake, H., Masuda, T., & Miyakoshi, K. (2012) Construction and waveform testing of the large scale crustal structure model for Southwest Japan. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, 2012, Paper no. 2789. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2789.pdf. Accessed 11 January 2019.

  • Petukhin, A., Kawabe, H., Miyakoshi, K., Okazaki, A., & Irikura, K. (2009). 3-D effects of space-time ray concentration on the EGF simulation results: Case of the 2007 Chuetsu-oki earthquake. Japan Geoscience Union Meeting 2009, Chiba, Japan, presentation S152-P003.

  • Petukhin, A., Yoshida, K., Miyakoshi, K., & Irikura, K. (2017). Tsunami simulation by tuned seismic source inversion for the great 2011 Tohoku earthquake. Pure and Applied Geophysics,174, 2891. https://doi.org/10.1007/s00024-017-1611-1.

    Article  Google Scholar 

  • Pitarka, A. (1999). 3D finite-difference modeling of seismic motion using staggered grids with nonuniform spacing. Bulletin of the Seismological Society of America,89, 54.

    Google Scholar 

  • Pulido, N., & Dalguer, L.-A. (2009). Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on the dynamic model of fault rupture: Application to the strong ground motion simulations. Bulletin of the Seismological Society of America,99, 3205. https://doi.org/10.1785/0120080165.

    Article  Google Scholar 

  • Satake, K., Fujii, Y., Harada, T., & Namegaya, Y. (2013). Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data. Bulletin of the Seismological Society of America,103, 1473. https://doi.org/10.1785/0120120122.

    Article  Google Scholar 

  • Satoh, T. (2012). Source modeling of the 2011 Off the Pacific Coast of Tohoku earthquake using empirical Green’s function method: From the viewpoint of the short-period spectral level of interpolate earthquakes. Journal of Structural and Construction Engineering,675, 695.

    Article  Google Scholar 

  • Simons, M., Minson, S. E., Sladen, A., Ortega, F., Jiang, J., Owen, S. E., et al. (2011). The 2011 magnitude 9.0 Tohoku-Oki earthquake: Mosaicking the megathrust from seconds to centuries. Science,332, 1421.

    Article  Google Scholar 

  • Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters,70, 59–80.

    Article  Google Scholar 

  • Suzuki, W., Aoi, S., Sekiguchi, H., & Kunugi, T. (2011). Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophysical Research Letters,38, L00G16. https://doi.org/10.1029/2011GL049136.

    Article  Google Scholar 

  • Tajima, F., Mori, J., & Kennett, B. L. N. (2013). A review of the 2011 Tohoku-oki earthquake (M w 9.0): Large-scale rupture across heterogeneous plate coupling. Tectonophysics,586, 15.

    Article  Google Scholar 

  • Wei, S., Graves, R., Helmberger, D., Avouac, J.-P., & Jiang, J. (2012). Sources of the shaking and flooding during the Tohoku-Oki earthquake: A mixture of rupture styles. Earth and Planetary Science Letters,333–334, 91–100.

    Article  Google Scholar 

  • Yagi, Y., & Fukahata, Y. (2011). Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release. Geophysical Research Letters,38, L19307. https://doi.org/10.1029/2011GL048701.

    Article  Google Scholar 

  • Yagi, Y., Nakao, A., & Kasahara, A. (2012). Smooth and rapid slip near the Japan trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth and Planetary Science Letters,355–356, 94. https://doi.org/10.1016/j.epsl.2012.08.018.

    Article  Google Scholar 

  • Yamazaki, Y., Cheung, K.-F., & Lay, T. (2013). Modeling of the 2011 Tohoku near-field tsunami from finite-fault inversion of seismic waves. Bulletin of the Seismological Society of America,103, 1444. https://doi.org/10.1785/0120120103.

    Article  Google Scholar 

  • Yoshida, K., Miyakoshi, K., & Irikura, K. (2011). Source process of the 2011 off the Pacific coast of Tohoku earthquake inferred from waveform inversion with long-period strong-motion records. Earth Planets Space,63, 577.

    Article  Google Scholar 

  • Yoshida, K., Petukhin, A., Miyakoshi, K., Hada, K., & Okazaki, A. (2012). Source process and constitutive relations of the 2011 Tohoku earthquake inferred from near-field strong-motion data. In Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, 2012, Paper No. 3876. http://www.iitk.ac.in/nicee/wcee/article/WCEE2012_3876.pdf. Accessed 11 January 2019.

  • Yue, H., & Lay, T. (2011). Inversion of high-rate (1-sps) GPS data for rupture process of the 11 march 2011 Tohoku earthquake (M w 9.1). Geophysical Research Letters,38, L00G09. https://doi.org/10.1029/2011GL048700.

    Article  Google Scholar 

Download references

Acknowledgements

We deeply appreciate comments provided by two anonymous reviewers and Guest Editor Dr. Changjiang Wu. Discussions with Dr. Ken Miyakoshi were helpful to improve the paper. This study was based on the 2014 research project “Improvement for uncertainty of strong ground motion prediction” by the Secretariat of the Nuclear Regulation Authority (NRA), Japan. The Super Computer Shaheen II at KAUST University was used to run the models presented in this study. Shaheen II is a Cray XC40 delivering over 7.2 Pflop/s of theoretical peak performance. Overall the system has a total of 197,568 processor cores and 790 TB of aggregate memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly Petukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvez, P., Petukhin, A., Irikura, K. et al. Dynamic Source Model for the 2011 Tohoku Earthquake in a Wide Period Range Combining Slip Reactivation with the Short-Period Ground Motion Generation Process. Pure Appl. Geophys. 177, 2143–2161 (2020). https://doi.org/10.1007/s00024-019-02210-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02210-7

Keywords

Navigation