Skip to main content
Log in

The Hartree and Hartree–Fock Equations in Lebesgue \(L^p\) and Fourier–Lebesgue \(\widehat{L}^p\) Spaces

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We establish some local and global well-posedness for Hartree–Fock equations of N particles (HFP) with Cauchy data in Lebesgue spaces \(L^p \cap L^2 \) for \(1\le p \le \infty \). Similar results are proven for fractional HFP in Fourier–Lebesgue spaces \( \widehat{L}^p \cap L^2 \ (1\le p \le \infty ).\) On the other hand, we show that the Cauchy problem for HFP is mildly ill-posed if we simply work in \(\widehat{L}^p \ (2<p\le \infty )\). Analogue results hold for reduced HFP. In the process, we prove the boundedeness of various trilinear estimates for Hartree type non linearity in these spaces which may be of independent interest. As a consequence, we get natural \(L^p\) and \(\widehat{L}^p\) extension of classical well-posedness theories of Hartree and Hartree–Fock equations with Cauchy data in just \(L^2-\)based Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In [6], Bourgain introduced this approach to establish failure of \(C^3-\)smoothness for the solution map of KdV and mKdv, see also [32]. Since then, many authors have used this approach, see for example, [14, Proposition 4.1] for cubic nonlinear half-wave equation.

  2. i.e. repeated indexed in a product are summed up: for example \(a_lb_lc_k\) stands for \(c_k\sum _{l=1}^Na_lb_l\)

References

  1. Bejenaru, I., Tao, T.: Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation. J. Funct. Anal. 233, 228–259 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhimani, D.G.: Global well-posedness for fractional Hartree equation on modulation spaces and Fourier algebra. J. Differ. Equ. 268, 141–159 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bhimani, D.G., Grillakis, M., Okoudjou, K.A.: The Hartree–Fock equations in modulation spaces. Commun. Partial Differ. Equ. 45, 1088–1117 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhimani, D.G., Haque, S.: Strong ill-posedness for fractional Hartree and cubic NLS equations. arXiv:2101.03991 (2021)

  5. Bhimani, D.G., Ratnakumar, P.: Functions operating on modulation spaces and nonlinear dispersive equations. J. Funct. Anal. 270, 621–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Periodic korteweg de vries equation with measures as initial data. Sel. Math. New Ser. 3, 115–159 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carles, R., Lucha, W., Moulay, E.: Higher-order Schrödinger and Hartree–Fock equations. J. Math. Phys. 56, 122301 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Carles, R., Mouzaoui, L.: On the Cauchy problem for the Hartree type equation in the Wiener algebra. Proc. Am. Math. Soc. 142, 2469–2482 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cazenave, T.: Semilinear Schrodinger Equations, vol. 10, American Mathematical Society (2003)

  10. Cazenave, T., Vega, L., Vilela, M.C.: A note on the nonlinear Schrödinger equation in weak \({L}^p\) spaces. Commun. Contemp. Math. 3, 153–162 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chenn, I., Sigal, I.: On Effective PDEs of Quantum Physics, in New Tools for Nonlinear PDEs and Application. Springer, pp. 1–47 (2019)

  12. Cho, Y., Fall, M.M., Hajaiej, H., Markowich, P.A., Trabelsi, S.: Orbital stability of standing waves of a class of fractional Schrödinger equations with hartree-type nonlinearity. Anal. Appl. 15, 699–729 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cho, Y., Hajaiej, H., Hwang, G., Ozawa, T.: On the cauchy problem of fractional Schrödinger equation with hartree type nonlinearity. Funkcialaj Ekvacioj 56, 193–224 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Choffrut, A., Pocovnicu, O.: Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line. Int. Math. Res. Not. 2018, 699–738 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fröhlich, J., Lenzmann, E.: Dynamical collapse of white dwarfs in Hartree-and Hartree–Fock theory. Commun. Math. Phys. 274, 737–750 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, Z., Wang, Y.: Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. Journal d’Analyse Mathématique 124, 1–38 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hayashi, N., Naumkin, P.I.: Asymptotics for large time of solutions to the nonlinear Schrödinger and Hartree equations. Am. J. Math. 120, 369–389 (1998)

    Article  MATH  Google Scholar 

  19. Hoshino, G., Hyakuna, R.: Trilinear \({L}^p\) estimates with applications to the Cauchy problem for the Hartree-type equation. J. Math. Anal. Appl. 469, 321–341 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hyakuna, R.: Multilinear estimates with applications to nonlinear Schrödinger and Hartree equations in \(\widehat{{L}}^p\)-spaces. J. Evol. Equ. 18, 1069–1084 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hyakuna, R.: On the global Cauchy problem for the Hartree equation with rapidly decaying initial data, in Annales de l’Institut Henri Poincaré C, Analyse non linéaire. Elsevier (2018)

  22. Hyakuna, R.: Global solutions to the Hartree equation for large \({L}^p\)-initial data. Indiana Univ. Math. J. 68, 1149–1172 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Keel, M., Tao, T.: Endpoint Strichartz estimates. Am. J. Math. 120, 955–980 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  25. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10, 43–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewin, M.: Existence of Hartree–Fock excited states for atoms and molecules. Lett. Math. Phys. 108, 985–1006 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Liflyand, E., Trigub, R.: Conditions for the absolute convergence of Fourier integrals. J. Approx. Theory 163, 438–459 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lipparini, E.: Modern Many-Particle Physics: Atomic Gasses, Nanostructures and Quantum Liquids (2008)

  29. Peccianti, M., Assanto, G.: Nematicons. Phys. Rep. 516, 147–208 (2012)

    Article  ADS  Google Scholar 

  30. Ruzhansky, M., Sugimoto, M., Wang, B.: Modulation spaces and nonlinear evolution equations. In: Evolution equations of hyperbolic and Schrödinger type. Springer, pp. 267–283 (2012)

  31. Tarulli, M., Venkov, G.: Decay and scattering in energy space for the solution of weakly coupled Schrödinger–Choquard and Hartree–Fock equations. J. Evol. Equ. 21, 1149–1178 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tzvetkov, N.: Remark on the local ill-posedness for kdv equation. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics 329, 1043–1047 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Wang, B., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zhou, Y.: Cauchy problem of nonlinear Schrödinger equation with initial data in Sobolev space \({W}^{s, p}\) for \(p<2\). Trans. Am. Math. Soc. 362, 4683–4694 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Both authors are thankful to Prof. K. Sandeep for the encouragement during this project and his thoughtful suggestions on the preliminary draft of this paper. D.G. B is thankful to DST-INSPIRE (DST/INSPIRE/04/2016/001507) for the financial support. Both authors are thankful to TIFR CAM for the excellent research facilities. Both authors are also thankful to Prof. Rémi Carles for his thoughtful suggestions and for bringing to our notice the reference [18]. Both authors are thankful to Prof. H. Hajaiej for the encouragement and thoughtful suggestions. We are grateful to an anonymous referee for pointing out the error in the previous version of this paper. This has helped us to improve the presentation of Sect. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saikatul Haque.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhimani, D.G., Haque, S. The Hartree and Hartree–Fock Equations in Lebesgue \(L^p\) and Fourier–Lebesgue \(\widehat{L}^p\) Spaces. Ann. Henri Poincaré 24, 1005–1049 (2023). https://doi.org/10.1007/s00023-022-01234-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01234-5

Mathematics Subject Classification

Navigation