Skip to main content
Log in

Random Quantum Correlations are Generically Non-classical

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

It is now a well-known fact that the correlations arising from local dichotomic measurements on an entangled quantum state may exhibit intrinsically non-classical features. In this paper we delve into a comprehensive study of random instances of such bipartite correlations. The main question we are interested in is: given a quantum correlation, taken at random, how likely is it that it is truly non-explainable by a classical model? We show that, under very general assumptions on the considered distribution, a random correlation which lies on the border of the quantum set is with high probability outside the classical set. What is more, we are able to provide the Bell inequality certifying this fact. On the technical side, our results follow from (i) estimating precisely the “quantum norm” of a random matrix and (ii) lower-bounding sharply enough its “classical norm”, hence proving a gap between the two. Along the way, we need a non-trivial upper bound on the \(\infty {\rightarrow }1\) norm of a random orthogonal matrix, which might be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007). arXiv:quant-ph/0702152

    Article  ADS  Google Scholar 

  2. Acin, A., Gisin, N., Massanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006). arXiv:quant-ph/0510094

    Article  ADS  MATH  Google Scholar 

  3. Ambainis, A., Bačkurs, A., Balodis, K., Kravčenko, D., Ozols, R., Smotrovs, J., Virza, M.: Quantum strategies are better than classical in almost any XOR games. In: Proceedings of the 39th ICALP, pp. 25–37 (2012). arXiv:1112.3330 [quant-ph]

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics, vol. 118, Cambridge University Press, Cambridge (2010)

  5. Aubrun, G., Szarek, S.J.: Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory. Mathematical Surveys and Monographs, vol. 223, American Mathematical Society (2017). http://math.univ-lyon1.fr/~aubrun/ABMB/index.html

  6. Barvinok, A.: Measure Concentration. Math 710 Lecture Notes, Department of Mathematics, University of Michigan (2005). http://www.math.lsa.umich.edu/~barvinok/total710.pdf

  7. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  8. Buhrman, H., Cleve, R., Massar, S., de Wolf, R.: Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665 (2010). arXiv:0907.3584 [quant-ph]

    Article  ADS  Google Scholar 

  9. Dupic, T., Pérez Castillo, I.: Spectral Density of Products of Wishart Dilute Random Matrices. Part I: The Dense Case. arXiv:1401.7802 [cond-mat.dis-nn]

  10. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  11. González-Guillén, C.E., Jiménez, C.H., Palazuelos, C., Villanueva, I.: Sampling quantum nonlocal correlations with high probability. Comm. Math. Phys. 344(1), 141–154 (2016). arXiv:1412.4010 [quant-ph]

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Götze, F., Kösters, H., Tikhomirov, A.: Asymptotic spectra of matrix-valued functions of independent random matrices and free probability. Random Matrices: Theory Appl. 04, 1550005 (2015). arXiv:1408.1732 [math.PR]

    Article  MATH  MathSciNet  Google Scholar 

  13. Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M.S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau, T.H., Hanson, R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526(7575), 682–686 (2015). arXiv:1508.05949 [quant-ph]

    Article  ADS  Google Scholar 

  14. Levy, P.: Problèmes Concrets d’analyse Fonctionnelle, 2nd edn. Gauthier-Villars, Paris (1951). (in French)

    MATH  Google Scholar 

  15. Meckes, E., Meckes, M.: Spectral measures of powers of random matrices. Electron. Commun. Probab. 18.78, 1–13 (2013). arXiv:1210.2681 [math.PR]

    MATH  MathSciNet  Google Scholar 

  16. Müller, R.R.: On the asymptotic eigenvalue distribution of concatenated vector-valued fading channels. IEEE Trans. Inf. Theor. 48, 2086–2091 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Palazuelos, C.: Random Constructions in Bell Inequalities: A Survey. arXiv:1502.02175 [quant-ph]

  18. Pironio, S., Acín, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bell’s theorem. Nature 464, 1021 (2010). arXiv:0911.3427 [quant-ph]

    Article  ADS  Google Scholar 

  19. Pisier, G.: Grothendieck’s theorem, past and present. Bull. Am. Math. Soc. 49, 237–323 (2012). arXiv:1101.4195 [math.FA]

    Article  MATH  MathSciNet  Google Scholar 

  20. Tsirelson, B.S.: Some results and problems on quantum Bell-type inequalities. Hadron. J. Suppl. 8(4), 329–345 (1993)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. González-Guillén.

Additional information

Communicated by David Pérez-García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Guillén, C.E., Lancien, C., Palazuelos, C. et al. Random Quantum Correlations are Generically Non-classical. Ann. Henri Poincaré 18, 3793–3813 (2017). https://doi.org/10.1007/s00023-017-0615-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0615-9

Navigation