Skip to main content
Log in

Quantum Graphs which Optimize the Spectral Gap

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

A finite discrete graph is turned into a quantum (metric) graph once a finite length is assigned to each edge and the one-dimensional Laplacian is taken to be the operator. We study the dependence of the spectral gap (the first positive Laplacian eigenvalue) on the choice of edge lengths. In particular, starting from a certain discrete graph, we seek the quantum graph for which an optimal (either maximal or minimal) spectral gap is obtained. We fully solve the minimization problem for all graphs. We develop tools for investigating the maximization problem and solve it for some families of graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariturk, S.: Eigenvalue estimates on quantum graphs. ArXiv e-prints (2016)

  2. Band, R., Berkolaiko, G., Weyand, T.: Anomalous nodal count and singularities in the dispersion relation of honeycomb graphs. J. Math. Phys. 56(12), 122111 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Berkolaiko, G.: A lower bound for nodal count on discrete and metric graphs. Commun. Math. Phys. 278(3), 803–819 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Berkolaiko, G., Kennedy, J.B., Kurasov, P., Mugnolo, D.: Edge connectivity and the spectral gap of combinatorial and quantum graphs. ArXiv e-prints (2017)

  5. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Volume 186 of Mathematical Surveys and Monographs. AMS, Providence (2013)

    MATH  Google Scholar 

  6. Berkolaiko, G., Liu, W.: Simplicity of eigenvalues and non-vanishing of eigenfunctions of a quantum graph. J. Math. Anal. Appl. arXiv:1601.06225v2 (2016)

  7. Buttazzo, G., Ruffini, B., Velichkov, B.: Shape optimization problems for metric graphs. ESAIM Control Optim. Calc. Var. 20(01), 1–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chavel, I.: Riemannian Geometry, 2nd edn. Cambridge University Press, Cambridge Books Online, Cambridge (2006)

    Book  MATH  Google Scholar 

  9. Colin de Verdière, Y.: Semi-classical measure on quantum graphs and the gauss map of the determinant manifold. Ann. Henri Poincaré 16(2), 347–364 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Courant, R.: Ein allgemeiner Satz zur Theorie der Eigenfuktionen selbstadjungierter Differentialausdrücke. Nachr. Ges. Wiss. Göttingen Math. Phys., pp. 81–84 (1923)

  11. Del Pezzo, L.M., Rossi, J.D.: The first eigenvalue of the \(p\)-Laplacian on quantum graphs. Anal. Math. Phys. 6(4), 365–391 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinits, E., Karzanov, A., Lomonosov, M.: On the structure of a family of minimal weighted cuts in graphs. In: Fridman, A. (ed.) Studies in Discrete Mathematics, pp. 290–306. Nauka, Moscow (1976). (in Russian)

    Google Scholar 

  13. Exner, P., Jex, M.: On the ground state of quantum graphs with attractive \(\delta \)-coupling. Phys. Lett. A 376(5), 713–717 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fleiner, T., and Frank, A.: A quick proof for the cactus representation of mincuts. Technical Report QP-2009-03, Egerváry Research Group, Budapest. www.cs.elte.hu/egres (2009)

  15. Friedlander, L.: Extremal properties of eigenvalues for a metric graph. Ann. Inst. Fourier (Grenoble) 55(1), 199–211 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Friedlander, L.: Genericity of simple eigenvalues for a metric graph. Israel J. Math. 146, 149–156 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gnutzmann, S., Smilansky, U.: Quantum graphs: applications to quantum chaos and universal spectral statistics. Adv. Phys. 55(5–6), 527–625 (2006)

    Article  ADS  Google Scholar 

  18. Gnutzmann, S., Smilansky, U., Weber, J.: Nodal counting on quantum graphs. Waves Random Media 14(1), S61–S73 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Karreskog, G., Kurasov, P., Trygg Kupersmidt, I.: Schrödinger operators on graphs: symmetrization and Eulerian cycles. Proc. Am. Math. Soc. 144(3), 1197–1207 (2016)

    Article  MATH  Google Scholar 

  20. Kennedy, J.B., Kurasov, P., Malenová, G., Mugnolo, D.: On the spectral gap of a quantum graph. Ann. Henri Poincaré 17(9), 1–35 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kennedy, J.B., and Mugnolo, D.: The Cheeger constant of a quantum graph. arXiv:1604.07453v2 [math.CO]

  22. Kottos, T., Smilansky, U.: Periodic orbit theory and spectral statistics for quantum graphs. Ann. Phys. NY 274, 76 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Kurasov, P.: On the spectral gap for Laplacians on metric graphs. Acta Phys. Pol. A 124(27), 1060 (2013)

    Article  Google Scholar 

  24. Kurasov, P., Malenová, G., Naboko, S.: Spectral gap for quantum graphs and their edge connectivity. J. Phys. A 46(27), 275309 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kurasov, P., Naboko, S.: Rayleigh estimates for differential operators on graphs. J. Spectr. Theory 4(2), 211–219 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mehlhorn, K., Neumann, A., Schmidt, J.M.: Certifying 3-edge-connectivity. Algorithmica 77(2), 309–335 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    Article  MATH  Google Scholar 

  28. Nagamochi, H., Ibaraki, T.: Algorithmic Aspects of Graph Connectivity. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  29. Nicaise, S.: Spectre des réseaux topologiques finis. Bull. Sci. Math. (2) 111(4), 401–413 (1987)

    MathSciNet  MATH  Google Scholar 

  30. Post, O.: Spectral analysis of metric graphs and related spaces. In: Arzhantseva, G., Valette, A. (eds.) Limits of Graphs in Group Theory and Computer Science, pp. 109–140. Presses Polytechniques et Universitaires Romandes, Lausanne (2009)

    Google Scholar 

  31. Rohleder, J.: Eigenvalue estimates for the Laplacian on a metric tree. Proc. Am. Math. Soc. arXiv:1602.03864v3 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Band.

Additional information

Communicated by Jan Derezinski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Band, R., Lévy, G. Quantum Graphs which Optimize the Spectral Gap. Ann. Henri Poincaré 18, 3269–3323 (2017). https://doi.org/10.1007/s00023-017-0601-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0601-2

Navigation