Skip to main content
Log in

Inequalities Between Size, Mass, Angular Momentum, and Charge for Axisymmetric Bodies and the Formation of Trapped Surfaces

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We establish inequalities relating the size of a material body to its mass, angular momentum, and charge, within the context of axisymmetric initial data sets for the Einstein equations. These inequalities hold in general without the assumption of the maximal condition and use a notion of size which is easily computable. Moreover, these results give rise to black hole existence criteria which are meaningful even in the time-symmetric case, and also include certain boundary effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anglada, P., Dain, S., Ortiz, O.: Inequality between size and charge in spherical symmetry. Phys. Rev. D 93, 044055 (2016). arXiv:1511.04489

    Article  ADS  MathSciNet  Google Scholar 

  2. Arnowitt, R., Deser, S., Misner, C.: Minimum size of dense source distributions in general relativity. Ann. Phys. 33, 88–107 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  3. Beig, R., Ó Murchadha, N.: Trapped surfaces due to concentration of gravitational radiation. Phys. Rev. Lett. 66, 2421–2424 (1991)

  4. Bizon, P., Malec, E., Ó Murchadha, N.: Trapped surfaces in spherical stars. Phys. Rev. Lett. 61, 1147–1450 (1988)

  5. Bizon, P., Malec, E., Ó Murchadha, N.: Trapped surfaces due to concentration of matter in spherically symmetric geometries. Class. Quantum Gravity 6, 961–976 (1989)

  6. Bray, H., Khuri, M.: A Jang equation approach to the Penrose inequality. Discrete Contin. Dyn. Syst. 27, 741–766 (2010). arXiv:0910.4785

    Article  MathSciNet  MATH  Google Scholar 

  7. Bray, H., Khuri, M.: P.D.E’.s which imply the Penrose conjecture. Asian J. Math. 15, 557–610 (2011). arXiv:0905.2622

    Article  MathSciNet  MATH  Google Scholar 

  8. Chruściel, P.: Mass and angular-momentum inequalities for axi-symmetric initial data sets. I. Positivity of mass. Ann. Phys. 323, 2566–2590 (2008). arXiv:0710.3680

  9. Clement, M., Jaramillo, J., Reiris, M.: Proof of the area-angular momentum-charge inequality for axisymmetric black holes. Class. Quantum Gravity 30, 065017 (2012). arXiv:1207.6761

    Article  MathSciNet  MATH  Google Scholar 

  10. Dain, S.: Geometric inequalities for black holes. Gen. Relativ. Gravit. 46, 1715 (2014). arXiv:1401.8166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dain, S.: Inequality between size and angular momentum for bodies. Phys. Rev. Lett. 112, 041101 (2014). arXiv:1305.6645

    Article  ADS  Google Scholar 

  12. Dain, S.: Bekenstein bounds and inequalities between size, charge, angular momentum and energy for bodies. Phys. Rev. D 92, 044033 (2015). arXiv:1506.04159

  13. Eardley, D.: Gravitational collapse of vacuum gravitational field configurations. J. Math. Phys. 36, 3004–3011 (1995). arXiv:gr-qc/9411024

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Flanagan, E.: Hoop conjecture for black-hole horizon formation. Phys. Rev. D 44, 2409–2420 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  15. Han, Q., Khuri, M.: Existence and blow up behavior for solutions of the generalized Jang equation. Commun. Partial Differ. Equ. 38, 2199–2237 (2013). arXiv:1206.0079

    Article  MathSciNet  MATH  Google Scholar 

  16. Khuri, M.: The hoop conjecture in spherically symmetric spacetimes. Phys. Rev. D 80, 124025 (2009). arXiv:0912.3533

  17. Khuri, M.: Existence of black holes due to concentration of angular momentum. J. High Energy Phys. 06, 188 (2015). arXiv:1503.06166

    ADS  MathSciNet  Google Scholar 

  18. Khuri, M.: Inequalities between size and charge for bodies and the existence of black holes due to concentration of charge. J. Math. Phys. 56, 112503 (2015). arXiv:1505.04516

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Malec, E.: Hoop conjecture and trapped surfaces in non-spherical massive systems. Phys. Rev. Lett. 67, 949–952 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Malec, E.: Isoperimetric inequalities in the physics of black holes. Acta Phys. Polon. B 22, 829–858 (1991)

    ADS  MathSciNet  Google Scholar 

  21. Malec, E., Xie, N.: Brown–York mass and the hoop conjecture in non-spherical massive systems. Phys. Rev. D 91, 081501 (2015). arXiv:1503.01354

    Article  ADS  Google Scholar 

  22. Munkres, J.: Topology. Prentice Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  23. Ó Murchadha, N., Tung, R.-S., Xie, N., Malec, E.: The Brown–York mass and the Thorne hoop conjecture. Phys. Rev. Lett. 104, 041101 (2010). arXiv:0912.4001

  24. Reiris, M.: On the shape of bodies in general relativistic regimes. Gen. Relativ. Gravit. 46, 1777 (2014). arXiv:1406.6938

    Article  ADS  MATH  Google Scholar 

  25. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem II. Commun. Math. Phys. 79, 231–260 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Schoen, R., Yau, S.-T.: The existence of a black hole due to condensation of matter. Commun. Math. Phys. 90, 575–579 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Seifert, H.: Naked singularities and cosmic censhorship: comment on the current situation. Gen. Relativ. Gravit. 10, 1065–1067 (1979)

    Article  ADS  Google Scholar 

  28. Szabados, L.: Quasi-local energy-momentum and angular momentum in GR: a review article. Living Rev. Relativ. 7, 1 (2004)

    Article  ADS  MATH  Google Scholar 

  29. Thorne, K.: Magic without magic: John Archibald Wheeler. In: Klauder, J. (eds) pp. 231. Freeman, San Francisco (1972)

  30. Wald, R.: General Relativity. The University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  31. Wald, R.: Gravitational collapse and cosmic censorship. In: Iyer, B., Bhawal, B. (eds) Black Holes, Gravitational Radiation and the Universe, Volume 100 of Fundamental Theories of Physics, pp. 69–85. Kluwer Academic, Dorddrecht (1999). arXiv: gr-qc/9710068

  32. Yau, S.-T.: Geometry of three manifolds and existence of black hole due to boundary effect. Adv. Theor. Math. Phys. 5, 755–767 (2001). arXiv:math/0109053

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naqing Xie.

Additional information

Communicated by James A. Isenberg.

Dedicated to the memory of our late friend and colleague Sergio Dain.

M. Khuri acknowledges the support of NSF Grant DMS-1308753. N. Xie is partially supported by the National Science Foundation of China Grants Nos. 11671089, 11421061.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khuri, M., Xie, N. Inequalities Between Size, Mass, Angular Momentum, and Charge for Axisymmetric Bodies and the Formation of Trapped Surfaces. Ann. Henri Poincaré 18, 2815–2830 (2017). https://doi.org/10.1007/s00023-017-0582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0582-1

Navigation