Skip to main content
Log in

Local Existence of Solutions to a Navier–Stokes-Nonlinear-Schrödinger Model of Superfluidity

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In Pitaevskii (Sov Phys JETP 35(8):282–287, 1959), a micro-scale model of superfluidity was derived from first principles, to describe the interacting dynamics between the superfluid and normal fluid phases of Helium-4. The model couples two of the most fundamental PDEs in mathematics: the nonlinear Schrödinger equation (NLS) and the Navier–Stokes equations (NSE). In this article, we show the local existence of solutions—strong in wavefunction and velocity, weak in density—to this system in a smooth bounded domain in 3D, by deriving the required a priori estimates. (We will also establish an energy inequality obeyed by the weak solutions constructed in Kim (SIAM J Math Anal 18(1):89–96, 1987) for the incompressible, inhomogeneous NSE.) To the best of our knowledge, this is the first rigorous mathematical analysis of a bidirectionally coupled system of the NLS and NSE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Parallels between superfluidity and superconductivity had been drawn for quite some time: the quantized vortex filaments in the former were analogous to the quantized magnetic flux tubes in the latter, and both phenomena were characterized as order-disorder transitions. Furthermore, following the success of the BCS theory of superconductivity, it became clear that the same explanation (Cooper pairing) can be extended to the superfluidity of the fermionic He-3.

  2. Interestingly, this formulation is used in David Bohm’s pilot wave theory, a deterministic yet complicated interpretation of quantum mechanics. This posits that a pilot wave (whose dynamics are governed by QHD) guides quantum particles in a classical manner, at odds with other descriptions, like the inherently random Copenhagen interpretation or the fantastical multiverse theories.

  3. For a justification of the exclusion of \(t=0\) in the boundary conditions for the wavefunction, see Remark 2.5.

  4. \(\mu >0\) (resp. \(\mu <0\)) is called the defocusing (resp. focusing) NLS.

  5. There is also the cubic nonlinearity term, which is to say that the relaxation to equilibrium also depends on the potential energy of the superfluid.

  6. See Remark .

  7. Of course, the local existence time depends on the choice of \(\varepsilon \) and should ideally be written as \(T_{\varepsilon }\). However, we will assume that the value of \(\varepsilon \) is fixed throughout this article, and for brevity, drop the subscript.

  8. Both the normal and tangential derivatives of \(\psi \) are zero on the boundary, the latter because \(\psi \) is zero on a smooth boundary.

  9. This trick will be used again for deriving the higher-order a priori estimates.

  10. Recall that \(\gamma = \mu ^2 \left( \Lambda + \frac{1}{\Lambda } \right) \).

  11. \(\left\Vert fg\right\Vert _{H^r}\lesssim \left\Vert f\right\Vert _{H^r}\left\Vert g\right\Vert _{H^r}\) for \(r>\frac{d}{2}\) in d dimensions.

  12. Compared to the Pitaevskii model, there is one extra vanishing derivative on the boundary for these eigenfunctions. This is to ensure some that the a priori estimates work out. See the handling of the \(B\psi \) term in Sect. 3.4.

  13. This is the same as the local existence time defined earlier, due to the a priori estimates. The latter guarantee that as long as the density is bounded below, the energy of the system is bounded above, implying that the coefficients of time dependence are bounded.

  14. Refer to Sect. 1.1 for the notation used in the case of Sobolev spaces of the x-variable.

  15. It should be mentioned here that T is finite, depending only on the initial data and size of the domain.

  16. It is worth noting that the obstacle to an energy equality in the work by Kim was the lack of strong convergence of the dissipative term; yet again, this boils down to the fact that there is no uniform bound on \(\partial _t u\) (since the density is not bounded below).

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, second Elsevier Science, Amsterdam (2003)

    MATH  Google Scholar 

  2. Allen, J.F., Jones, H.: New phenomena connected with heat flow in helium II [2]. Nature 141(3562), 243–244 (1938)

    Article  ADS  Google Scholar 

  3. Allen, J.F., Misener, A.D.: Flow phenomena in liquid helium II. Nature 142(3597), 643–644 (1938)

    Article  ADS  Google Scholar 

  4. Antonelli, P., Marcati, P.: On the finite energy weak solutions to a system in quantum fluid dynamics. Commun. Math. Phys. 287, 657–686 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Antonelli, P., Marcati, P.: The quantum hydrodynamics system in two space dimensions. Arch. Ration. Mech. Anal. 203(2), 499–527 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Antonelli, P., Marcati, P.: Finite energy global solutions to a two-fluid model arising in superfluidity. Bull. Inst. Math. Acad. Sin. 10(3), 349–373 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Bresch, D., Desjardins, B.: Quelques modèles diffusifs capillaires de type Korteweg. Comptes Rendus Mécanique 332, 881–886 (2004)

  8. Bewley, G.P., Lathrop, D.P., Sreenivasan, K.R.: Visualisation of quantised vortices. Nature 441(7093), 588 (2006)

    Article  ADS  Google Scholar 

  9. Boldrini, J.L., Rojas-Medar, M.A., Fernández-Cara, E.: Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids. J. Math. Pures Appl. 82(11), 1499–1525 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Carles, R., Danchin, R., Saut, J.C.: Madelung, Gross–Pitaevskii and Korteweg. Nonlinearity 25(10), 2843–2873 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Choe, H.J., Kim, H.: Strong solutions of the Navier–Stokes equations for nonhomogeneous incompressible fluids. Commun. Partial Differ. Equ. 28(5–6), 1183–1201 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Well-posedness for non-linear dispersive and wave equations

  13. Carles, R., Markowich, P.A., Sparber, C.: On the Gross–Pitaevskii equation for trapped dipolar quantum gases. Nonlinearity 21(11), 2569–2590 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chandler-Wilde, S.N., Hewett, D.P., Moiola, A.: Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples. Mathematika 61, 414–443 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donatelli, D., Feireisl, E., Marcati, P.: Well/ill posedness for the Euler–Korteweg–Poisson system and related problems. Commun. Partial Differ. Equ. 40(7), 1314–1335 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dodson, B.: Global well-posedness and scattering for the defocusing, L\({^{\hat{\,}}}\)2-critical, nonlinear Schrödinger equation when d = 2. Duke Math. J. 165(18), 3435–3516 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Evans, L.C.: Partial Differential Equations, second American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  18. Feireisl, E.: Dynamics of Viscous Compressible Fluids. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  19. Feynman, R.P.: Application of quantum mechanics to liquid helium. In: Progress in Low Temperature Physics, vol. 1, chapter 2. Elsevier, pp. 17–53 (1955)

  20. Fefferman, C.L., Hajduk, K.W., Robinson, J.C.: Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces. arXiv preprint (2019)

  21. Gazzola, F., Grunau, H.-C., Sweers, G.: Polyharmonic Boundary Value Problems: A Monograph on Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded Domains. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  22. Guermond, J.-L., Salgado, A.: A note on the Stokes operator and its powers. J. Appl. Math. Comput. 36, 241–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hattori, H., Li, D.: Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25(1), 85–98 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hattori, H., Li, D.: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, 84–97 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jüngel, A., Li, H.: Quantum Euler–Poisson systems: global existence and exponential decay. Q. Appl. Math. 62(3), 569–600 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jüngel, A., Mariano, M.C., Rial, D.: Local existence of solutions to the transient quantum hydrodynamics equations. Math. Models Methods Appl. Sci. 12(4), 485–495 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Jayanti, P.C., Trivisa, K.: Global regularity of the 2D HVBK equations. J. Nonlinear Sci. 31(2), 1–23 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Jayanti, P.C., Trivisa, K.: Uniqueness in a Navier–Stokes-nonlinear-Schrödinger model of superfluidity. arXiv:2109.14083 (2021)

  29. Jüngel, A.: Global weak solutions to compressible Navier–Stokes equations for quantum fluids. SIAM J. Math. Anal. 42(3), 1025–1045 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kapitza, P.: Viscosity of liquid helium below the \(\lambda \)-point. Nature 141(3558), 74 (1938)

    Article  ADS  Google Scholar 

  31. Kazhikov, A.V.: Solvability of the initial and boundary value problem for the equations of motion of an inhomogeneous viscous incompressible fluid. Sov. Phys. Dokl. 19(6), 331–332 (1974)

    ADS  Google Scholar 

  32. Kim, J.U.: Weak solutions of an initial boundary value problem for an incompressible viscous fluid with non-negative density. SIAM J. Math. Anal. 18(1), 89–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Landau, L.: Theory of the superfluidity of helium II. Phys. Rev. 60(4), 356–358 (1941)

    Article  ADS  MATH  Google Scholar 

  34. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 2. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  35. Lions, P.-L.: Mathematical Topics in Fluid Mechanics, vol. 1. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  36. Ladyzhenskaya, O.A., Solonnikov, V.A.: Unique solvability of an initial- and boundary-value problem for viscous incompressible nonhomogeneous fluids. J. Sov. Math. 9(5), 697–749 (1978)

    Article  MATH  Google Scholar 

  37. Manouzi, H.: A mixed variational formulation for the Navier–Stokes problem with hyper-dissipation. Comput. Math. Appl. 50(10–12), 1639–1646 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Majda, A.J., Bertozzi, A.L.: Vorticity and Incompressible Flow, 1st edn. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  39. Onsager, L.: Introductory talk. In: Proceedings of International Conference on Theoritical Physics, Tokyo, pp. 887–880 (1953)

  40. Pitaevskii, L.P.: Phenomenological theory of superfluidity near the Lambda point. Sov. Phys. JETP 35(8), 282–287 (1959)

    MathSciNet  Google Scholar 

  41. Robinson, J.C., Rodrigo, J.L., Sadowski, W.: The Three-Dimensional Navier–Stokes Equations. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  42. Simon, J.: Compact sets in the space \(L^p(O,T;B)\). Ann. Mat. 146, 65–96 (1986)

    Article  Google Scholar 

  43. Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure. SIAM J. Math. Anal. 21(5), 1093–1117 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sohinger, V.: Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger equations. PhD thesis, Massachusetts Institute of Technology (2011)

  45. Tao, T.: Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society, Providence (2006)

    Book  MATH  Google Scholar 

  46. Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis, 1st edn. North-Holland Publishing Company, Amsterdam (1977)

    MATH  Google Scholar 

  47. Vinen, W.F.: The physics of superfluid helium. Technical report, CERN (2004)

  48. Vasseur, A.F., Cheng, Yu.: Global weak solutions to the compressible quantum Navier–Stokes equations with damping. SIAM J. Math. Anal. 48(2), 1489–1511 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, G., Guo, B.: A blow-up criterion of strong solutions to the quantum hydrodynamic model. Acta Math. Sci. 40(3), 795–804 (2020)

    Article  MathSciNet  Google Scholar 

  50. Wang, G., Guo, B.: A new blow-up criterion of the strong solution to the quantum hydrodynamic model. Appl. Math. Lett. 119, 107045 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the discussions with Yan Guo that helped correct some minor errors. Both authors would like to thank the anonymous referees for their suggestions which helped improve the original manuscript. P.C.J. was partially supported by the Ann Wylie Fellowship at UMD. Both P.C.J. and K.T. gratefully acknowledge the support of the National Science Foundation under the awards DMS-1614964 and DMS-2008568.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranava Chaitanya Jayanti.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by G. P. Galdi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanti, P.C., Trivisa, K. Local Existence of Solutions to a Navier–Stokes-Nonlinear-Schrödinger Model of Superfluidity. J. Math. Fluid Mech. 24, 46 (2022). https://doi.org/10.1007/s00021-022-00681-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-022-00681-8

Keywords

Navigation