Skip to main content
Log in

A General Vector-Valued Beurling Theorem

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Suppose \(\alpha \) is a rotationally symmetric norm on \(L^{\infty }\left( \mathbb {T}\right) \) and \(\beta \) is a “nice” norm on \(L^{\infty }\left( \Omega ,\mu \right) \) where \(\mu \) is a \(\sigma \)-finite measure on \(\Omega \). We prove a version of Beurling’s invariant subspace theorem for the space \(L^{\beta }\left( \mu ,H^{\alpha }\right) .\) Our proof uses the version of Beurling’s theorem on \(H^{\alpha }\left( \mathbb {T}\right) \) in Chen (Adv Appl Math, 2016) and measurable cross-section techniques. Our result significantly extends a result of Rezaei, Talebzadeh, and Shin (Int J Math Anal 6:701–707, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arveson, W.: An invitation to C*-algebras, Graduate Texts in Mathematics, No. 39. Springer-Verlag, New York-Heidelberg (1976)

    Book  Google Scholar 

  2. Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 239–255 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Y.: Function spaces based on symmetric norms. Doctoral Dissertation, University of New Hampshire (2014)

  4. Chen, Y.: A general Beurling-Helson-Lowdenslager theorem on the disk. Adv. Appl. Math. (to appear)

  5. Diestel, J., Uhl, J.J.: Vector measures, Mathematical Surveys. No. 15. American Mathematical Society, Providence (1977)

  6. Fremlin, D.H.: Measure theory, vol. 3, Corrected secondprinting of the 2002 original. Torres Fremlin, Colchester (2004)

  7. Fang, J., Hadwin, D., Nordgren, E., Shen, J.: Tracial gauge norms on finite von Neumann algebras satisfying the weak Dixmier property. J. Funct. Anal. 255, 142–183 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Helson, H., Lowdenslager, D.: Invariant subspaces. In: Proc. Internat. Sympos. on Linear Spaces (Jerusalem, 1960), pp. 251–262. Jerusalem Academic Press, Pergamon, Oxford

  9. Kreĭn, S.G., Petunīn, Y.I., Semënov, E.M.: Interpolation of linear operators. Translated from the Russian by J. Szűcs, Translations of Mathematical Monographs, American Mathematical Society, Providence, R.I. (1982)

  10. Lax, P.: Shift invariant spaces. Acta Math. 101, 163–178 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II, Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin–New York (1979)

  12. Halmos, P.: Shifts on Hilbert spaces. J. Reine Angew. Math. 208, 102–112 (1961)

    MathSciNet  MATH  Google Scholar 

  13. Rao, M.M., Ren, Z.D.: Applications of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 250. Marcel Dekker Inc, New York (2002)

    Google Scholar 

  14. Rezaei, H., Talebzadeh, S., Shin, D.Y.: Beurling’s theorem for vector-valued Hardy spaces. Int. J. Math. Anal. 6, 701–707 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Srinivasan, T.P.: Simply invariant subspaces. Bull. Am. Math. Soc. 69, 706–709 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  16. von Neumann, J.: Some matrix-inequalities and metrization of matrix-space. Tomsk. Univ. Rev. 1, 286–300 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanni Chen.

Additional information

This work was completed with the support of the National Natural Science Foundation of China (Grant Nos. 11601297 and 11601298) and the Eric Nordgren Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Hadwin, D. & Zhang, Y. A General Vector-Valued Beurling Theorem. Integr. Equ. Oper. Theory 86, 321–332 (2016). https://doi.org/10.1007/s00020-016-2330-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-016-2330-1

Mathematics Subject Classification

Keywords

Navigation