Skip to main content

Advertisement

Log in

Recapitulating pancreatic cell–cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Over the past few years, extensive efforts have been made to generate in-vitro pancreatic micro-tissue, for disease modeling or cell replacement approaches in pancreatic related diseases such as diabetes mellitus. To obtain these goals, a closer look at the diverse cells participating in pancreatic development is necessary. Five major non-epithelial pancreatic (pN-Epi) cell populations namely, pancreatic endothelium, mesothelium, neural crests, pericytes, and stellate cells exist in pancreas throughout its development, and they are hypothesized to be endogenous inducers of the development. In this review, we discuss different pN-Epi cells migrating to and existing within the pancreas and their diverse effects on pancreatic epithelium during organ development mediated via associated signaling pathways, soluble factors or mechanical cell–cell interactions. In-vivo and in-vitro experiments, with a focus on N-Epi cells’ impact on pancreas endocrine development, have also been considered. Pluripotent stem cell technology and multicellular three-dimensional organoids as new approaches to generate pancreatic micro-tissues have also been discussed. Main challenges for reaching a detailed understanding of the role of pN-Epi cells in pancreas development in utilizing for in-vitro recapitulation have been summarized. Finally, various novel and innovative large-scale bioengineering approaches which may help to recapitulate cell–cell interactions and are crucial for generation of large-scale in-vitro multicellular pancreatic micro-tissues, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. a Lipophilic cationic indocarbocyanine fluorescent dye for membrane staining.

  2. A cell-surface chondroitin sulfate proteoglycan.

  3. The epithelium lining the surface layer of the embryonic mesoderm.

  4. Magnetic levitation method (MLM) applies growing 3D tissue by inducing cells treated with magnetic nanoparticle assemblies in spatially varying magnetic fields using neodymium magnetic drivers and promoting cell–cell interactions by levitating the cells up to the air/liquid interface of a standard petri dish.

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

α-SMA:

Alpha-smooth muscle actin

AAT:

Alpha-1 antitrypsin

Ang-1:

Angiopoietin

BM-MSC:

Bone marrow-mesenchymal stem cells

BMP4:

Bone morphogenetic protein 4

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

DM:

Diabetes mellitus

DKK1:

Dickkopf-related protein 1

DPC:

Days post-conception

EB:

Embryoid bodies

E:

Embryonic day

EC:

Endothelial cell

ECM:

Extra cellular matrix

EGFL7:

Epidermal growth factor‐like domain 7

EPC:

Endothelial progenitor cell

eNOS:

Endothelial nitric-oxide synthase

FAK:

Focal adhesion kinase

FGF10:

Fibroblast growth factor 10

FOXD3:

Forkhead Box D3

GDNF:

Glial cell-derived neurotrophic factor

GFP:

Green fluorescent protein

GLUT2:

Glucose transporter 2

GP2:

Glycoprotein 2

GSIS:

Glucose -stimulated insulin secretion

hESC:

Human embryonic stem cell

HGF:

Hepatocyte growth factor

hiPSC:

Human induced pluripotent stem cell

hPSC:

Human pluripotent stem cell

HOX:

Homeobox

HUVEC:

Human umbilical vein endothelial cell

IGF:

Insulin growth factor

IL-6:

Interleukin-6

IRS2:

Insulin receptor substrate-2

ISL-1:

Insulin gene enhancer protein ISL-1

LAMA2:

α2 Laminins

LGALS1:

Galectin 1

MAFA:

Musculoaponeurotic fibrosarcoma oncogene family A.

mESC:

Mouse embryonic stem cell

MIDY:

Mutant insulin-gene-induced diabetes of youth

MIN6:

Mouse insulinoma 6

MMP:

Metalloproteinases

MPCs:

Multipotent progenitor cells

MSCs:

Mesenchymal stem cells

NC:

Neural crest

NG2:

Neural-glial Antigen 2

NGN3:

Neurogenin3

NKX3.2:

NK3 Homeobox 2 /NKX2.2: NK2 Homeobox 2 /NKX6.1: NK6 Homeobox 1

PDAC:

Pancreatic ductal adenocarcinoma

PAX3:

Paired box gene 3

PHOX2B:

Paired-like homeobox 2b

PECAM1:

Platelet and endothelial cell adhesion molecule 1

PEG:

Poly Ethylene Glycol

PES/PBP:

Poly ether sulfone/poly vinyl pyrrolidone

PBX1:

Pre-B-cell leukemia transcription factor 1

PDX1:

Pancreas-duodenum homeobox protein1

PDGF:

Platelet-derived growth factor

PDGFRβ:

Platelet-derived growth factor receptor-beta

PGA:

Poly glycolic acid

PTF1a:

Pancreas transcription factor 1 subunit alpha

pN-Epi:

Pancreatic non-epithelial

RAS:

Renin–angiotensin system

RHMVEC:

Rat heart microvascular endothelial cell

S1P:

Sphingosine-1-phosphate

SC-β CELLS:

Stem cell-derived β-cells

SDC4:

Syndecan4

SFRP3:

Secreted frizzled-related protein 3

SOX9/10:

SRY-Box 9/10

STZ:

Streptozotocin

SynCAM:

Synaptic cell adhesion molecule/CADM-1

T1DM:

Type 1 diabetes mellitus

T2DM:

Type 2 diabetes mellitus

TCF7L2:

Transcription factor 7 like 2

TGFβ:

Transforming growth factor β

Tie-2:

Tyrosine-protein kinase receptor Tie-2

TIMP-1:

TIMP metallopeptidase inhibitor 1

TF:

Transcription factor

TFAP2α:

Transcription factor AP-2 alpha

Vcan:

Versican

VEGF:

Vascular endothelial growth factor

vSMC:

Vascular smooth muscle cell

WPC:

Weeks post-conception

WNT:

Wingless

References

  1. Nair GG, Tzanakakis ES, Hebrok M (2020) Emerging routes to the generation of functional β-cells for diabetes mellitus cell therapy. Nat Rev Endocrinol 1–13

  2. Bourgeois S, Sawatani T, Van Mulders A, De Leu N, Heremans Y, Heimberg H, Cnop M, Staels W (2021) Towards a functional cure for diabetes using stem cell-derived beta cells: are we there yet? Cells 10:191

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson JD (2016) The quest to make fully functional human pancreatic beta cells from embryonic stem cells: climbing a mountain in the clouds. Diabetologia 59:2047–2057

    CAS  PubMed  Google Scholar 

  4. Rezania A, Bruin JE, Riedel MJ, Mojibian M, Asadi A, Xu J, Gauvin R, Narayan K, Karanu F, O’Neil JJ, Ao Z, Warnock GL, Kieffer TJ (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61:2016–2029. https://doi.org/10.2337/db11-1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pagliuca FW, Millman JR, Gurtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159:428–439. https://doi.org/10.1016/j.cell.2014.09.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    CAS  PubMed  Google Scholar 

  7. Abdelalim EM, Emara MM (2015) Advances and challenges in the differentiation of pluripotent stem cells into pancreatic β cells. World J Stem Cells 7:174–181

    PubMed  PubMed Central  Google Scholar 

  8. Larsen HL, Grapin-Botton A (2017) The molecular and morphogenetic basis of pancreas organogenesis. Semin Cell Dev Biol 66:51–68

    CAS  PubMed  Google Scholar 

  9. Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A (2018) Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Current topics in developmental biology. Elsevier, Amsterdam, pp 143–190

    Google Scholar 

  10. Ghani MW, Ye L, Yi Z, Ghani H, Birmani MW, Nawab A, Cun LG, Bin L, Mei X (2019) Pancreatic β-cell replacement: advances in protocols used for differentiation of pancreatic progenitors to β-like cells. Folia Histochem Cytobiol 57:101–115

    CAS  PubMed  Google Scholar 

  11. Jennings RE, Berry AA, Strutt JP, Gerrard DT, Hanley NA (2015) Human pancreas development. Development 142:3126–3137

    CAS  PubMed  Google Scholar 

  12. Khosravi-Maharlooei M, Hajizadeh-Saffar E, Tahamtani Y, Basiri M, Montazeri L, Khalooghi K, Ashtiani MK (2015) Islet transplantation for type 1 diabetes: so close and yet so far away. Eur J Endoerinol 173:R165–R183

    Google Scholar 

  13. Bastidas-Ponce A, Scheibner K, Lickert H, Bakhti M (2017) Cellular and molecular mechanisms coordinating pancreas development. Development 144:2873–2888

    CAS  PubMed  Google Scholar 

  14. Shih HP, Wang A, Sander MJAroc (2013) Pancreas organogenesis: from lineage determination to morphogenesis. Ann Rev Cell Dev Biol 29:81–105

    CAS  Google Scholar 

  15. Yang K, Wang Y, Du Z, Zhang X (2014) Short-reactivation of neurogenin-3 and mesenchymal microenvironment is require for β-cells differentiation during fetal pancreas development and islet regeneration. Romanian J Morphol Embryol Revue Roumaine de Morphol Embryol 55:305–311

    Google Scholar 

  16. Benitez CM, Goodyer WR, Kim SK (2012) Deconstructing pancreas developmental biology. Cold Spring Harbor perspectives in biology 4:a012401

  17. Sznurkowska MK, Hannezo E, Azzarelli R, Rulands S, Nestorowa S, Hindley CJ, Nichols J, Göttgens B, Huch M, Philpott A (2018) Defining lineage potential and fate behavior of precursors during pancreas development. Dev Cell 46:360–375365

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Edlund H (2001) Developmental biology of the pancreas. Diabetes 50:S5

    CAS  PubMed  Google Scholar 

  19. Larsen BM, Hrycaj SM, Newman M, Li Y, Wellik DM (2015) Mesenchymal Hox6 function is required for mouse pancreatic endocrine cell differentiation. Development 142:3859–3868

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakhneny L, Khalifa-Malka L, Landsman L (2019) Pancreas organogenesis: Approaches to elucidate the role of epithelial-mesenchymal interactions. Semin Cell Dev Biol 92:89–96

    CAS  PubMed  Google Scholar 

  21. Olsson R, Carlsson P-O (2006) The pancreatic islet endothelial cell: emerging roles in islet function and disease. Int J Biochem Cell Biol 38:710–714

    CAS  PubMed  Google Scholar 

  22. Ranjan AK, Joglekar MV, Hardikar A (2009) Endothelial cells in pancreatic islet development and function. Islets 1:2–9

    PubMed  Google Scholar 

  23. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    CAS  PubMed  Google Scholar 

  24. Lammert E, Cleaver O, Melton D (2003) Role of endothelial cells in early pancreas and liver development. Mech Dev 120:59–64

    CAS  PubMed  Google Scholar 

  25. Pierreux CE, Cordi S, Hick A-C, Achouri Y, de Almodovar CR, Prévot P-P, Courtoy PJ, Carmeliet P, Lemaigre FPJDb (2010) Epithelial: Endothelial cross-talk regulates exocrine differentiation in developing pancreas. Dev Biol 347:216–227

    CAS  PubMed  Google Scholar 

  26. Talavera-Adame D, Dafoe DC (2015) Endothelium-derived essential signals involved in pancreas organogenesis. World J Exp Med 5:40

    PubMed  PubMed Central  Google Scholar 

  27. Yoshitomi H, Zaret KS (2004) Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development 131:807–817

    CAS  PubMed  Google Scholar 

  28. Guney MA (2009) Gannon MJBDRPCETR. Pancreas cell fate 87:232–248

    CAS  Google Scholar 

  29. Hogan MF, Hull RLJD (2017) The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes. Diabetologia 60:952–959

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Staels W, Heremans Y, Heimberg H, De Leu N (2019) VEGF-A and blood vessels: a beta cell perspective. Diabetologia 62:1961–1968

    PubMed  Google Scholar 

  31. Ning FC, Jensen N, Mi J, Lindström W, Balan M, Muhl L, Eriksson U, Nilsson I, Nyqvist D (2020) VEGF-B ablation in pancreatic β-cells upregulates insulin expression without affecting glucose homeostasis or islet lipid uptake. Sci Rep 10:1–13

    Google Scholar 

  32. Johansson Å, Lau J, Sandberg M, Borg L, Magnusson P, Carlsson P-O (2009) Endothelial cell signalling supports pancreatic beta cell function in the rat. Diabetologia 52:2385–2394

    CAS  PubMed  Google Scholar 

  33. Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, Fässler R, Gu G, Gerber H-P, Ferrara N (2006) The vascular basement membrane: a niche for insulin gene expression and β cell proliferation. Dev Cell 10:397–405

    CAS  PubMed  Google Scholar 

  34. Pan FC, Brissova M (2014) Pancreas development in humans. Curr Opin Endocrinol Diabetes Obes 21:77–82. https://doi.org/10.1097/med.0000000000000047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hashimoto S, Kubota N, Sato H, Sasaki M, Takamoto I, Kubota T, Nakaya K, Noda M, Ueki K, Kadowaki T (2015) Insulin receptor substrate-2 (Irs2) in endothelial cells plays a crucial role in insulin secretion. Diabetes 64:876–886

    CAS  PubMed  Google Scholar 

  36. Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937

    CAS  PubMed  Google Scholar 

  37. Cai Q, Brissova M, Reinert RB, Pan FC, Brahmachary P, Jeansson M, Shostak A, Radhika A, Poffenberger G, Quaggin SE (2012) Enhanced expression of VEGF-A in β cells increases endothelial cell number but impairs islet morphogenesis and β cell proliferation. Dev Biol 367:40–54

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hadi HA, Al Suwaidi J (2007) Endothelial dysfunction in diabetes mellitus. Vasc Health Risk Manag 3:853

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Peiris H, Bonder CS, Coates PTH, Keating DJ, Jessup CF (2014) The β-cell/EC axis: how do islet cells talk to each other? Diabetes 63:3–11

    CAS  PubMed  Google Scholar 

  40. Pan FC, Wright C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240:530–565

    CAS  PubMed  Google Scholar 

  41. Seymour PA, Serup P (2019) Mesodermal induction of pancreatic fate commitment. Semin Cell Dev Biol 92:77–88

    CAS  PubMed  Google Scholar 

  42. Landsman L, Nijagal A, Whitchurch TJ, VanderLaan RL, Zimmer WE, MacKenzie TC, Hebrok M (2011) Pancreatic mesenchyme regulates epithelial organogenesis throughout development. PLoS Biol 9:e1001143

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Angelo JR, Tremblay KD (2018) Identification and fate mapping of the pancreatic mesenchyme. Dev Biol 435:15–25

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Attali M, Stetsyuk V, Basmaciogullari A, Aiello V, Zanta-Boussif MA, Duvillie B, Scharfmann R (2007) Control of β-cell differentiation by the pancreatic mesenchyme. Diabetes 56:1248–1258

    CAS  PubMed  Google Scholar 

  45. Duvillié B, Attali M, Bounacer A, Ravassard P, Basmaciogullari A, Scharfmann R (2006) The mesenchyme controls the timing of pancreatic β-cell differentiation. Diabetes 55:582–589

    PubMed  Google Scholar 

  46. Byrnes LE, Wong DM, Subramaniam M, Meyer NP, Gilchrist CL, Knox SM, Tward AD, Chun JY, Sneddon JB (2018) Lineage dynamics of murine pancreatic development at single-cell resolution. Nat Commun 9:1–17

    CAS  Google Scholar 

  47. Cooper TT, Sherman SE, Bell GI, Ma J, Kuljanin M, Jose SE, Lajoie GA, Hess DA (2020) Characterization of a Vimentin high/Nestin high proteome and tissue regenerative secretome generated by human pancreas-derived mesenchymal stromal cells. Stem Cells 38:666–682

    CAS  PubMed  Google Scholar 

  48. Cozzitorto C, Mueller L, Ruzittu S, Mah N, Willnow D, Darrigrand J-F, Wilson H, Khosravinia D, Mahmoud A-A, Risolino M (2020) A specialized niche in the pancreatic microenvironment promotes endocrine differentiation. Dev Cell 55:150-162 e156

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Miralles F, Lamotte L, Couton D, Joshi RL (2003) Interplay between FGF10 and Notch signalling is required for the self-renewal of pancreatic progenitors. Int J Dev Biol 50:17–26

    Google Scholar 

  50. Ye F, Duvillie B, Scharfmann R (2005) Fibroblast growth factors 7 and 10 are expressed in the human embryonic pancreatic mesenchyme and promote the proliferation of embryonic pancreatic epithelial cells. Diabetologia 48:277–281

    CAS  PubMed  Google Scholar 

  51. Kobberup S, Schmerr M, Dang M-L, Nyeng P, Jensen JN, MacDonald RJ, Jensen J (2010) Conditional control of the differentiation competence of pancreatic endocrine and ductal cells by Fgf10. Mech Dev 127:220–234

    CAS  PubMed  Google Scholar 

  52. Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M (2012) A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 139:3363–3372

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Otonkoski T, Cirulli V, Beattie M, Mally MI, Soto G, Rubin JS, Hayek A (1996) A role for hepatocyte growth factor/scatter factor in fetal mesenchyme-induced pancreatic beta-cell growth. Endocrinology 137:3131–3139

    CAS  PubMed  Google Scholar 

  54. Guo T, Landsman L, Li N, Hebrok M (2013) Factors expressed by murine embryonic pancreatic mesenchyme enhance generation of insulin-producing cells from hESCs. Diabetes 62:1581–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hammerle CM, Sandovici I, Brierley GV, Smith NM, Zimmer WE, Zvetkova I, Prosser HM, Sekita Y, Lam BY, Ma M (2020) Mesenchyme-derived IGF2 is a major paracrine regulator of pancreatic growth and function. PLoS Genet 16:e1009069

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Guerriero I, De Angelis MT, D’Angelo F, Leveque R, Savignano E, Roberto L, Lucci V, Mazzone P, Laurino S, Storto G (2019) Exploring the molecular crosstalk between pancreatic bud and mesenchyme in embryogenesis: novel signals involved. Int J Mol Sci 20:4900

    CAS  PubMed Central  Google Scholar 

  57. Russ HA, Landsman L, Moss CL, Higdon R, Greer RL, Kaihara K, Salamon R, Kolker E, Hebrok M (2016) Dynamic proteomic analysis of pancreatic mesenchyme reveals novel factors that enhance human embryonic stem cell to pancreatic cell differentiation. Stem Cells Int 2016

  58. Tulachan SS, Doi R, Hirai Y, Kawaguchi Y, Koizumi M, Hembree M, Tei E, Crowley A, Yew H, McFall C (2006) Mesenchymal epimorphin is important for pancreatic duct morphogenesis. Dev Growth Differ 48:65–72

    CAS  PubMed  Google Scholar 

  59. Miralles F, Czernichow P, Scharfmann R (1998) Follistatin regulates the relative proportions of endocrine versus exocrine tissue during pancreatic development. Development 125:1017–1024

    CAS  PubMed  Google Scholar 

  60. Gilbert JM, Adams MT, Sharon N, Jayaraaman H, Blum B (2021) Morphogenesis of the islets of Langerhans is guided by extra-endocrine Slit2/3 signals. Molecular and cellular biology 41

  61. Epshtein A, Rachi E, Sakhneny L, Mizrachi S, Baer D, Landsman L (2017) Neonatal pancreatic pericytes support β-cell proliferation. Mol Metab 6:1330–1338

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Armulik A, Genové G, Betsholtz C (2011) Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell 21:193–215

    CAS  PubMed  Google Scholar 

  63. Lin PY, Peng SJ, Shen CN, Pasricha PJ, Tang SC (2016) PanIN-associated pericyte, glial, and islet remodeling in mice revealed by 3D pancreatic duct lesion histology. Am J Physiol Gastrointest Liver Physiol 311:412–422

    Google Scholar 

  64. Tang S-C, Jessup CF, Campbell-Thompson M (2018) The role of accessory cells in Islet homeostasis. Curr Diabetes Rep 18:117

    Google Scholar 

  65. Baron M, Veres A, Wolock SL, Faust AL, Gaujoux R, Vetere A, Ryu JH, Wagner BK, Shen-Orr SS, Klein AM (2016) A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure. Cell Syst 3:346-360 e344

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJ (2016) A single-cell transcriptome atlas of the human pancreas. Cell Syst 3:385-394 e383

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ferdek PE, Jakubowska MA (2017) Biology of pancreatic stellate cells—more than just pancreatic cancer. Pflügers Archiv Eur J Physiol 469:1039–1050

    CAS  Google Scholar 

  68. Zhou Y, Sun B, Li W, Zhou J, Gao F, Wang X, Cai M, Sun Z (2019) Pancreatic stellate cells: a rising translational physiology star as a potential stem cell type for beta cell neogenesis. Front Physiol 10:218

    PubMed  PubMed Central  Google Scholar 

  69. Xue R, Jia K, Wang J, Yang L, Wang Y, Gao L, Hao J (2018) A rising star in pancreatic diseases: pancreatic stellate cells. Front Physiol 9:754

    PubMed  PubMed Central  Google Scholar 

  70. Tang S-C, Chiu Y-C, Hsu C-T, Peng S-J, Fu Y-Y (2013) Plasticity of Schwann cells and pericytes in response to islet injury in mice. Diabetologia 56:2424–2434

    PubMed  Google Scholar 

  71. Harari N, Sakhneny L, Khalifa-Malka L, Busch A, Hertel KJ, Hebrok M, Landsman L (2019) Pancreatic pericytes originate from the embryonic pancreatic mesenchyme. Dev Biol 449:14–20

    CAS  PubMed  Google Scholar 

  72. Asahina K, Zhou B, Pu WT, Tsukamoto H (2011) Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver. Hepatology 53:983–995

    CAS  PubMed  Google Scholar 

  73. Simsek S, Zhou T, Robinson CL, Tsai S-Y, Crespo M, Amin S, Lin X, Hon J, Evans T, Chen S (2016) Modeling cystic fibrosis using pluripotent stem cell-derived human pancreatic ductal epithelial cells. Stem Cells Transl Med 5:572–579

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Almaça J, Weitz J, Rodriguez-Diaz R, Pereira E, Caicedo A (2018) The pericyte of the pancreatic islet regulates capillary diameter and local blood flow. Cell Metab 27:630–644634

    PubMed  PubMed Central  Google Scholar 

  75. Sasson A, Rachi E, Sakhneny L, Baer D, Lisnyansky M, Epshtein A, Landsman L (2016) Islet pericytes are required for β-cell maturity. Diabetes 65:3008–3014

    CAS  PubMed  Google Scholar 

  76. Sakhneny L, Rachi E, Epshtein A, Guez HC, Wald-Altman S, Lisnyansky M, Khalifa-Malka L, Hazan A, Baer D, Priel A (2018) Pancreatic pericytes support β-cell function in a Tcf7l2-dependent manner. Diabetes 67:437–447

    CAS  PubMed  Google Scholar 

  77. Landsman L (2019) Pancreatic pericytes in glucose homeostasis and diabetes. Adv Exp Med Biol 1122:27–40

    CAS  PubMed  Google Scholar 

  78. Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H (2007) BMP4-BMPR1A signaling in β cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5:207–219

    CAS  PubMed  Google Scholar 

  79. Hammes H-P (2018) Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia 61:29–38

    PubMed  Google Scholar 

  80. Pfister F, Wang Y, Schreiter K, Vom Hagen F, Altvater K, Hoffmann S, Deutsch U, Hammes H-P, Feng Y (2010) Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol 47:59–64

    CAS  PubMed  Google Scholar 

  81. Zhang Z-S, Zhou H-N, He S-S, Xue M-Y, Li T, Liu L-M (2020) Research advances in pericyte function and their roles in diseases. Chin J Traumatol 23:89–95

    PubMed  PubMed Central  Google Scholar 

  82. Yang Y, Kim JW, Park HS, Lee EY, Yoon KH (2020) Pancreatic stellate cells in the islets as a novel target to preserve the pancreatic β-cell mass and function. J Diabetes Investig 11:268–280

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hutchins EJ, Kunttas E, Piacentino ML, Howard AG IV, Bronner ME, Uribe RA (2018) Migration and diversification of the vagal neural crest. Dev Biol 444:S98–S109

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Plank JL, Mundell NA, Frist AY, LeGrone AW, Kim T, Musser MA, Walter TJ, Labosky PA (2011) Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation. Dev Biol 349:321–330

    CAS  PubMed  Google Scholar 

  85. Shimada K, Tachibana T, Fujimoto K, Sasaki T, Okabe M (2012) Temporal and spatial cellular distribution of neural crest derivatives and alpha cells during islet development. Acta Histochem et Cytochem 1202130134–1202130134

  86. Arntfield M, van der Kooy D (2013) The adult mammalian pancreas contains separate precursors of pancreatic and neural crest developmental origins. Stem Cells Dev 22:2145–2157

    CAS  PubMed  Google Scholar 

  87. Pearse A, Polak JM (1971) Neural crest origin of the endocrine polypeptide (APUD) cells of the gastrointestinal tract and pancreas. Gut 12:783–788

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Pictet RL, Rall LB, Phelps P, Rutter WJ (1976) The neural crest and the origin of the insulin-producing and other gastrointestinal hormone-producing cells. Science 191:191–192

    CAS  PubMed  Google Scholar 

  89. Nekrep N, Wang J, Miyatsuka T, German MS (2008) Signals from the neural crest regulate beta-cell mass in the pancreas. Development 135:2151–2160

    CAS  PubMed  Google Scholar 

  90. Muñoz-Bravo JL, Hidalgo-Figueroa M, Pascual A, López-Barneo J, Leal-Cerro A, Cano DA (2013) GDNF is required for neural colonization of the pancreas. Development 140:3669–3679

    PubMed  Google Scholar 

  91. Kozlova EN, Jansson L (2009) Differentiation and migration of neural crest stem cells are stimulated by pancreatic islets. NeuroReport 20:833–838

    PubMed  Google Scholar 

  92. Vargas-Valderrama A, Messina A, Mitjavila-Garcia MT, Guenou H (2020) The endothelium, a key actor in organ development and hPSC-derived organoid vascularization. J Biomed Sci 27:1–13

    Google Scholar 

  93. Banerjee I, Sharma N, Yarmush M (2011) Impact of co-culture on pancreatic differentiation of embryonic stem cells. J Tissue Eng Regen Med 5:313–323

    CAS  PubMed  Google Scholar 

  94. Jaramillo M, Mathew S, Mamiya H, Goh SK, Banerjee I (2015) Endothelial cells mediate islet-specific maturation of human embryonic stem cell-derived pancreatic progenitor cells. Tissue Eng Part A 21:14–25

    CAS  PubMed  Google Scholar 

  95. Talavera-Adame D, Wu G, He Y, Ng TT, Gupta A, Kurtovic S, Hwang JY, Farkas DL, Dafoe DC (2011) Endothelial cells in co-culture enhance embryonic stem cell differentiation to pancreatic progenitors and insulin-producing cells through BMP signaling. Stem Cell Rev Rep 7:532–543

    CAS  PubMed  Google Scholar 

  96. Weizman A, Michael I, Wiesel-Motiuk N, Rezania A, Levenberg S (2014) The effect of endothelial cells on hESC-derived pancreatic progenitors in a 3D environment. Biomater Sci 2:1706–1714

    CAS  PubMed  Google Scholar 

  97. Kao D-I, Lacko LA, Ding B-S, Huang C, Phung K, Gu G, Rafii S, Stuhlmann H, Chen SJScr (2015) Endothelial cells control pancreatic cell fate at defined stages through EGFL7 signaling. Stem Cell Rep 4:181–189

    CAS  Google Scholar 

  98. Augsornworawat P, Velazco-Cruz L, Song J, Millman JR (2019) A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells. Acta Biomater 97:272–280

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Candiello J, Grandhi TSP, Goh SK, Vaidya V, Lemmon-Kishi M, Eliato KR, Ros R, Kumta PN, Rege K, Banerjee I (2018) 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform. Biomaterials 177:27–39

    CAS  PubMed  Google Scholar 

  100. Skrzypek K, Barrera YB, Groth T, Stamatialis D (2018) Endothelial and beta cell composite aggregates for improved function of a bioartificial pancreas encapsulation device. Int J Artif Organs 41:152–159

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li Y, Fan P, Ding X-M, Tian X-H, Feng X-S, Yan H, Pan X-M, Tian P-X, Zheng J, Ding C-G (2017) Polyglycolic acid fibrous scaffold improving endothelial cell coating and vascularization of islet. Chin Med J 130:832

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Urbanczyk M, Zbinden A, Layland SL, Duffy G, Schenke-Layland K (2020) Controlled heterotypic pseudo-islet assembly of human β-cells and human umbilical vein endothelial cells using magnetic levitation. Tissue Eng Part A 26:387–399

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Golosow N, Grobstein C (1962) Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol 4:242–255

    CAS  PubMed  Google Scholar 

  104. Wessells NK, Cohen JH (1967) Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev Biol 15:237–270

    CAS  PubMed  Google Scholar 

  105. Li Z, Manna P, Kobayashi H, Spilde T, Bhatia A, Preuett B, Prasadan K, Hembree M, Gittes GK (2004) Multifaceted pancreatic mesenchymal control of epithelial lineage selection. Dev Biol 269:252–263

    CAS  PubMed  Google Scholar 

  106. Rose MI, Crisera CA, Colen KL, Connelly PR, Longaker MT, Gittes GK (1999) Epithelio-mesenchymal interactions in the developing mouse pancreas: morphogenesis of the adult architecture. J Pediatr Surg 34:774–780

    CAS  PubMed  Google Scholar 

  107. Li XY, Wu SY, Leung PS (2019) Human fetal bone marrow-derived mesenchymal stem cells promote the proliferation and differentiation of pancreatic progenitor cells and the engraftment function of islet-like cell clusters. Int J Mol Sci 20:4083

    CAS  PubMed Central  Google Scholar 

  108. Sneddon JB, Borowiak M, Melton DA (2012) Self-renewal of embryonic-stem-cell-derived progenitors by organ-matched mesenchyme. Nature 491:765–768

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Scavuzzo MA, Yang D, Borowiak M (2017) Organotypic pancreatoids with native mesenchyme develop Insulin producing endocrine cells. Sci Rep 7:10810

    PubMed  PubMed Central  Google Scholar 

  110. Scuteri A, Donzelli E, Rodriguez-Menendez V, Ravasi M, Monfrini M, Bonandrini B, Figliuzzi M, Remuzzi A, Tredici G (2014) A double mechanism for the mesenchymal stem cells’ positive effect on pancreatic islets. PLoS ONE 9:e84309

    PubMed  PubMed Central  Google Scholar 

  111. Quaranta P, Antonini S, Spiga S, Mazzanti B, Curcio M, Mulas G, Diana M, Marzola P, Mosca F, Longoni B (2014) Co-transplantation of endothelial progenitor cells and pancreatic islets to induce long-lasting normoglycemia in streptozotocin-treated diabetic rats. PLoS ONE 9:e94783

    PubMed  PubMed Central  Google Scholar 

  112. Oh B, Oh S, Jin S, Suh S, Bae J, Park CG, Lee MS, Lee MK, Kim J (2013) Co-transplantation of bone marrow-derived endothelial progenitor cells improves revascularization and organization in islet grafts. Am J Transplant 13:1429–1440

    CAS  PubMed  Google Scholar 

  113. Coppens V, Heremans Y, Leuckx G, Suenens K, Jacobs-Tulleneers-Thevissen D, Verdonck K, Lahoutte T, Luttun A, Heimberg H, De Leu NJD (2013) Human blood outgrowth endothelial cells improve islet survival and function when co-transplanted in a mouse model of diabetes. Diabetologia 56:382–390

    CAS  PubMed  Google Scholar 

  114. Nyqvist D, Speier S, Rodriguez-Diaz R, Molano RD, Lipovsek S, Rupnik M, Dicker A, Ilegems E, Zahr-Akrawi E, Molina J (2011) Donor islet endothelial cells in pancreatic islet revascularization. Diabetes 60:2571–2577

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Grapensparr L, Christoffersson G, Carlsson P-O (2018) Bioengineering with endothelial progenitor cells improves the vascular engraftment of transplanted human islets. Cell Transplant 27:948–956

    PubMed  PubMed Central  Google Scholar 

  116. Barba-Gutierrez DA, Daneri-Navarro A, Villagomez-Mendez JJA, Kanamune J, Robles-Murillo AK, Sanchez-Enriquez S, Villafan-Bernal JR, Rivas-Carrillo JD (2016) Facilitated engraftment of isolated islets coated with expanded vascular endothelial cells for islet transplantation. Transpl Proc 48:669–672

    Google Scholar 

  117. Jung E-J, Kim S-C, Wee Y-M, Kim Y-H, Choi MY, Jeong S-H, Lee J, Lim D-G, Han D-J (2011) Bone marrow-derived mesenchymal stromal cells support rat pancreatic islet survival and insulin secretory function in vitro. Cytotherapy 13:19–29

    CAS  PubMed  Google Scholar 

  118. Johansson U, Rasmusson I, Niclou SP, Forslund N, Gustavsson L, Nilsson B, Korsgren O, Magnusson PU (2008) Formation of composite endothelial cell–mesenchymal stem cell islets: a novel approach to promote islet revascularization. Diabetes 57:2393–2401

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Park K-S, Kim Y-S, Kim J-H, Choi B, Kim S-H, Tan AH-K, Lee M-S, Lee M-K, Kwon C-H, Joh J-W (2010) Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation. Transplantation 89:509–517

    CAS  PubMed  Google Scholar 

  120. Gao X, Song L, Shen K, Wang H, Qian M, Niu W, Qin X (2014) Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions. Mol Cell Endocrinol 388:41–50

    CAS  PubMed  Google Scholar 

  121. Figliuzzi M, Cornolti R, Perico N, Rota C, Morigi M, Remuzzi G, Remuzzi A, Benigni A (2009) Bone marrow–derived mesenchymal stem cells improve islet graft function in diabetic rats. Transpl Proc 41:1797–1800

    CAS  Google Scholar 

  122. Lu Y, Jin X, Chen Y, Li S, Yuan Y, Mai G, Tian B, Long D, Zhang J, Zeng L (2010) Mesenchymal stem cells protect islets from hypoxia/reoxygenation-induced injury. Cell Biochem Funct 28:637–643

    CAS  PubMed  Google Scholar 

  123. Li F, Wang X, Deng C, Qi H, Ren L, Zhou H (2010) Immune modulation of co-transplantation mesenchymal stem cells with islet on T and dendritic cells. Clin Exp Immunol 161:357–363

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Berman DM, Willman MA, Han D, Kleiner G, Kenyon NM, Cabrera O, Karl JA, Wiseman RW, O’connor DH, Bartholomew AM (2010) Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates. Diabetes 59:2558–2568

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kono TM, Sims EK, Moss DR, Yamamoto W, Ahn G, Diamond J, Tong X, Day KH, Territo PR, Hanenberg H (2014) Human adipose-derived stromal/stem cells protect against STZ-induced hyperglycemia: Analysis of hASC-derived paracrine effectors. Stem Cells 32:1831–1842

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ding Y, Xu D, Feng G, Bushell A, Muschel RJ, Wood KJ (2009) Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and-9. Diabetes 58:1797–1806

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hajizadeh-Saffar E, Tahamtani Y, Aghdami N, Azadmanesh K, Habibi-Anbouhi M, Heremans Y, De Leu N, Heimberg H, Ravassard P, Shokrgozar M (2015) Inducible VEGF expression by human embryonic stem cell-derived mesenchymal stromal cells reduces the minimal islet mass required to reverse diabetes. Sci Rep 5:1–10

    Google Scholar 

  128. Olerud J, Kanaykina N, Vasilovska S, King D, Sandberg M, Jansson L, Kozlova E (2009) Neural crest stem cells increase beta cell proliferation and improve islet function in co-transplanted murine pancreatic islets. Diabetologia 52:2594–2601

    CAS  PubMed  Google Scholar 

  129. D’Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE (2005) Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol 23:1534–1541. https://doi.org/10.1038/nbt1163

    Article  CAS  PubMed  Google Scholar 

  130. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    CAS  PubMed  Google Scholar 

  131. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, Micallef SJ, Park IH, Basford C, Wheeler MB, Daley GQ, Elefanty AG, Stanley EG, Keller G (2011) Stage-specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861–871. https://doi.org/10.1242/dev.055236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nostro MC, Keller G (2012) Generation of beta cells from human pluripotent stem cells: potential for regenerative medicine. Semin Cell Dev Biol 23:701–710

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J, Agulnick AD, D’Amour KA, Carpenter MK, Baetge EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    CAS  PubMed  Google Scholar 

  134. Bruin JE, Rezania A, Xu J, Narayan K, Fox JK, O’Neil JJ, Kieffer TJ (2013) Maturation and function of human embryonic stem cell-derived pancreatic progenitors in macroencapsulation devices following transplant into mice. Diabetologia 56:1987–1998. https://doi.org/10.1007/s00125-013-2955-4

    Article  PubMed  Google Scholar 

  135. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I, Asadi A, Odwyer S, Quiskamp N, Mojibian M, Albrecht T (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nature Biotechnol 32:1121–1133

    CAS  Google Scholar 

  136. Rezania A, Bruin JE, Xu J, Narayan K, Fox JK, O’Neil JJ, Kieffer TJ (2013) Enrichment of human embryonic stem cell-derived NKX6. 1-expressing pancreatic progenitor cells accelerates the maturation of insulin-secreting cells in vivo. Stem cells 31:2432–2442

    CAS  PubMed  Google Scholar 

  137. Nostro MC, Sarangi F, Yang C, Holland A, Elefanty AG, Stanley EG, Greiner DL, Keller G (2015) Efficient generation of NKX6-1+ pancreatic progenitors from multiple human pluripotent stem cell lines. Stem Cell Rep 4:591–604. https://doi.org/10.1016/j.stemcr.2015.02.017

    Article  CAS  Google Scholar 

  138. Soltanian A, Ghezelayagh Z, Mazidi Z, Halvaei M, Mardpour S, Ashtiani MK, Hajizadeh-Saffar E, Tahamtani Y, Baharvand H (2019) Generation of functional human pancreatic organoids by transplants of embryonic stem cell derivatives in a 3D-printed tissue trapper. J Cell Physiol 234:9564–9576

    CAS  PubMed  Google Scholar 

  139. Ghezelayagh Z, Zabihi M, Zarkesh I, Gonçalves CA, Larsen M, Hagh-parast N, Pakzad M, Vosough M, Arjmand B, Baharvand H (2021) Improved differentiation of hESC-derived pancreatic progenitors by using human fetal pancreatic mesenchymal cells in a micro-scalable three-dimensional co-culture system. Stem Cell Reviews and Reports. https://doi.org/10.1007/s12015-021-10266-z

  140. Bonfanti P, Nobecourt E, Oshima M, Albagli-Curiel O, Laurysens V, Stangé G, Sojoodi M, Heremans Y, Heimberg H, Scharfmann R (2015) Ex vivo expansion and differentiation of human and mouse fetal pancreatic progenitors are modulated by epidermal growth factor. Stem Cells Dev Biol 24:1766–1778

    CAS  Google Scholar 

  141. Nair GG, Liu JS, Russ HA, Tran S, Saxton MS, Chen R, Juang C, Li M-l, Nguyen VQ, Giacometti S (2019) Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat Cell Biol 21:263–274

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Ameri J, Borup R, Prawiro C, Ramond C, Schachter KA, Scharfmann R, Semb H (2017) Efficient generation of glucose-responsive beta cells from isolated GP2+ human pancreatic progenitors. Cell Rep 19:36–49

    CAS  PubMed  Google Scholar 

  143. Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, Liu DR, Kibbey RG, Melton DA (2020) Glucose response by stem cell-derived β cells in vitro is inhibited by a bottleneck in glycolysis. Cell Rep 31:107623

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu X, Qin J, Chang M, Wang S, Li Y, Pei X, Wang Y (2020) Enhanced differentiation of human pluripotent stem cells into pancreatic endocrine cells in 3D culture by inhibition of focal adhesion kinase. Stem Cell Res Ther 11:1–12

    CAS  Google Scholar 

  145. Hogrebe NJ, Augsornworawat P, Maxwell KG, Velazco-Cruz L, Millman JR (2020) Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat Biotechnol 38:460–470

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Qadir MMF, Álvarez-Cubela S, Belle K, Sapir T, Messaggio F, Johnson KB, Umland O, Hardin D, Klein D, Pérez-Álvarez I (2019) A double fail-safe approach to prevent tumorigenesis and select pancreatic β cells from human embryonic stem cells. Stem Cell Rep 12:611–623

    CAS  Google Scholar 

  147. Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 21:3255–3268

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bao M, Xie J, Huck WT (2018) Recent advances in engineering the stem cell microniche in 3D. Adv Sci 5:1800448

    Google Scholar 

  149. Melton D (2021) The promise of stem cell-derived islet replacement therapy. Diabetologia 1–7

  150. Lanzoni G, Ricordi C (2021) Transplantation of stem cell-derived pancreatic islet cells. Nat Rev Endocrinol 17:7–8

    CAS  PubMed  Google Scholar 

  151. De Klerk E, Hebrok M (2021) Stem cell-based clinical trials for diabetes mellitus. Front Endocrinol 12

  152. Stock AA, Manzoli V, De Toni T, Abreu MM, Poh Y-C, Ye L, Roose A, Pagliuca FW, Thanos C, Ricordi C (2020) Conformal coating of stem cell-derived islets for β cell replacement in type 1 diabetes. Stem Cell Rep 14:91–104

    CAS  Google Scholar 

  153. Alam M, Arunagiri A, Haataja L, Torres M, Larkin D, Kappler J, Jin N, Arvan P (2021) Predisposition to proinsulin misfolding as a genetic risk to diet-induced diabetes. biorxiv 70:488

    Google Scholar 

  154. Millman JR, Xie C, Van Dervort A, Gurtler M, Pagliuca FW, Melton DA (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11463. https://doi.org/10.1038/ncomms11463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rajaei B, Shamsara M, Amirabad LM, Massumi M, Sanati MH (2017) Pancreatic endoderm-derived from diabetic patient-specific induced pluripotent stem cell generates glucose-responsive insulin-secreting cells. J Cell Physiol 232:2616–2625

    CAS  PubMed  Google Scholar 

  156. Jang J, Yoo J-E, Lee J-A, Lee DR, Kim JY, Huh YJ, Kim D-S, Park C-Y, Hwang D-Y, Kim H-S (2012) Disease-specific induced pluripotent stem cells: a platform for human disease modeling and drug discovery. Exp Mol Med 44:202–213

    CAS  PubMed  Google Scholar 

  157. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ (2008) Disease-specific induced pluripotent stem cells. Cell 134:877–886. https://doi.org/10.1016/j.cell.2008.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Takahashi Y, Sekine K, Kin T, Takebe T, Taniguchi H (2018) Self-condensation culture enables vascularization of tissue fragments for efficient therapeutic transplantation. Cell Rep 23:1620–1629

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Takebe T, Enomura M, Yoshizawa E, Kimura M, Koike H, Ueno Y, Matsuzaki T, Yamazaki T, Toyohara T, Osafune K (2015) Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation. Cell Stem Cell 16:556–565

    CAS  PubMed  Google Scholar 

  160. Chen H, Zhuo Q, Ye Z, Xu X, Ji S (2020) Organoid model: A new hope for pancreatic cancer treatment? Biochim et Biophys Acta (BBA)-Rev Cancer 188466

  161. Frappart P-O, Hofmann TG (2020) Pancreatic ductal adenocarcinoma (Pdac) organoids: The shining light at the end of the tunnel for drug response prediction and personalized medicine. Cancers 12:2750

    CAS  PubMed Central  Google Scholar 

  162. Balak JR, Juksar J, Carlotti F, Nigro AL, de Koning EJ (2019) Organoids from the human fetal and adult pancreas. Curr DiabRep 19:160

    CAS  Google Scholar 

  163. Öhlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M, Corbo V, Oni TE, Hearn SA, Lee EJ (2017) Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med 214:579–596

    PubMed  PubMed Central  Google Scholar 

  164. Funata M, Nio Y, Erion DM, Thompson WL, Takebe T (2021) The promise of human organoids in the digestive system. Cell Death Differ 28:84–94

    PubMed  Google Scholar 

  165. Ouchi R, Togo S, Kimura M, Shinozawa T, Koido M, Koike H, Thompson W, Karns RA, Mayhew CN, McGrath PS (2019) Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab 30:374-384 e376

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Enge M, Arda HE, Mignardi M, Beausang J, Bottino R, Kim SK, Quake SR (2017) Single-cell analysis of human pancreas reveals transcriptional signatures of aging and somatic mutation patterns. Cell 171:321-330 e314

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Toda S, Frankel NW, Lim WA (2019) Engineering cell–cell communication networks: programming multicellular behaviors. Curr Opin Chem Biol 52:31–38

    CAS  PubMed  Google Scholar 

  168. Hunckler MD, García AJ (2020) Engineered biomaterials for enhanced function of insulin-secreting β-cell organoids. Adv Funct Mater 30:2000134

    CAS  Google Scholar 

  169. Woodford C, Zandstra PW (2012) Tissue engineering 2.0: guiding self-organization during pluripotent stem cell differentiation. Curr Opin Biotechnol 23:810–819

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bal T, Nazli C, Okcu A, Duruksu G, Karaöz E, Kizilel S (2017) Mesenchymal stem cells and ligand incorporation in biomimetic poly (ethylene glycol) hydrogels significantly improve insulin secretion from pancreatic islets. J Tissue Eng Regenerat Med 11:694–703

    CAS  Google Scholar 

  171. Broguiere N, Isenmann L, Hirt C, Ringel T, Placzek S, Cavalli E, Ringnalda F, Villiger L, Züllig R, Lehmann R (2018) Growth of epithelial organoids in a defined hydrogel. Adv Mater 30:1801621

    Google Scholar 

  172. Tumarkin E, Tzadu L, Csaszar E, Seo M, Zhang H, Lee A, Peerani R, Purpura K, Zandstra PW, Kumacheva E (2011) High-throughput combinatorial cell co-culture using microfluidics. Integr Biol 3:653–662

    CAS  Google Scholar 

  173. Chwalek K, Levental KR, Tsurkan MV, Zieris A, Freudenberg U, Werner C (2011) Two-tier hydrogel degradation to boost endothelial cell morphogenesis. Biomaterials 32:9649–9657

    CAS  PubMed  Google Scholar 

  174. Jung T-H, Chung E-B, Kim HW, Choi SW, Park S-J, Mukhtar AS, Chung H-M, Kim E, Huh KM, Kim DS (2020) Application of co-culture technology of epithelial type cells and mesenchymal type cells using nanopatterned structures. PLoS ONE 15:232899

    Google Scholar 

  175. Torisawa Y-s, Mosadegh B, Luker GD, Morell M, O’Shea KS, Takayama S (2009) Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr Biol 1:649–654

    CAS  Google Scholar 

  176. Barati G, Nadri S, Hajian R, Rahmani A, Mostafavi H, Mortazavi Y, Taromchi AH (2019) Differentiation of microfluidic-encapsulated trabecular meshwork mesenchymal stem cells into insulin producing cells and their impact on diabetic rats. J Cell Physiol 234:6801–6809

    CAS  PubMed  Google Scholar 

  177. Yu Y, Gamble A, Pawlick R, Pepper AR, Salama B, Toms D, Razian G, Ellis C, Bruni A, Gala-Lopez B (2018) Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia 61:2016–2029

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M (2018) 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioactive materials 3:144–156

    PubMed  PubMed Central  Google Scholar 

  179. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    CAS  PubMed  Google Scholar 

  180. Ma Z, Holle AW, Melde K, Qiu T, Poeppel K, Kadiri VM, Fischer P (2020) Acoustic holographic cell patterning in a biocompatible hydrogel. Adv Mater 32:1904181

    CAS  Google Scholar 

  181. Zwi-Dantsis L, Wang B, Marijon C, Zonetti S, Ferrini A, Massi L, Stuckey DJ, Terracciano CM, Stevens MM (2020) Remote magnetic nanoparticle manipulation enables the dynamic patterning of cardiac tissues. Adv Mater 32:1904598

    CAS  Google Scholar 

  182. Mao H, Yang L, Zhu H, Wu L, Ji P, Yang J, Gu Z (2020) Recent advances and challenges in materials for 3D bioprinting. Prog Nat Sci Mater Int 30:618–634

    CAS  Google Scholar 

  183. Armstrong JP, Stevens MM (2020) Using remote fields for complex tissue engineering. Trends Biotechnol 38:254–263

    CAS  PubMed  Google Scholar 

  184. Bouyer C, Chen P, Güven S, Demirtaş TT, Nieland TJ, Padilla F, Demirci U (2016) A bio-acoustic levitational (BAL) assembly method for engineering of multilayered, 3D brain-like constructs, using human embryonic stem cell derived neuro-progenitors. Adv Mater 28:161–167

    CAS  PubMed  Google Scholar 

  185. Serpooshan V, Chen P, Wu H, Lee S, Sharma A, Hu DA, Venkatraman S, Ganesan AV, Usta OB, Yarmush M (2017) Bioacoustic-enabled patterning of human iPSC-derived cardiomyocytes into 3D cardiac tissue. Biomaterials 131:47–57

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kirkham GR, Britchford E, Upton T, Ware J, Gibson GM, Devaud Y, Ehrbar M, Padgett M, Allen S, Buttery LD (2015) Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci Rep 5:1–7

    Google Scholar 

  187. Jafari J, Han X-l, Palmer J, Tran PA, O’Connor AJ (2019) Remote control in formation of 3D multicellular assemblies using magnetic forces. ACS Biomater Sci Eng 5:2532–2542

    CAS  PubMed  Google Scholar 

  188. Bobbert F, Zadpoor A (2017) Effects of bone substitute architecture and surface properties on cell response, angiogenesis, and structure of new bone. J Mater Chem B 5:6175–6192

    CAS  PubMed  Google Scholar 

  189. Zhao D, Xue C, Li Q, Liu M, Ma W, Zhou T, Lin Y (2018) Substrate stiffness regulated migration and angiogenesis potential of A549 cells and HUVECs. J Cell Physiol 233:3407–3417

    CAS  PubMed  Google Scholar 

  190. Phelps EA, Landázuri N, Thulé PM, Taylor WR, García AJ (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107:3323–3328

    CAS  PubMed  Google Scholar 

  191. Lee P-F, Bai Y, Smith R, Bayless K, Yeh A (2013) Angiogenic responses are enhanced in mechanically and microscopically characterized, microbial transglutaminase crosslinked collagen matrices with increased stiffness. Acta Biomater 9:7178–7190

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Zhou YL, Yang QQ, Zhang L, Tang JB (2021) Nanoparticle-coated sutures providing sustained growth factor delivery to improve the healing strength of injured tendons. Acta Biomater 124:301–314

    CAS  PubMed  Google Scholar 

  193. Limasale YDP, Atallah P, Werner C, Freudenberg U, Zimmermann R (2020) Tuning the local availability of VEGF within glycosaminoglycan-based hydrogels to modulate vascular endothelial cell morphogenesis. Adv Func Mater 30:2000068

    CAS  Google Scholar 

  194. Song H-HG, Rumma RT, Ozaki CK, Edelman ER, Chen CS (2018) Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell 22:340–354

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Moeinvaziri F, Shojaei A, Haghparast N, Yakhkeshi S, Nemati S, Hassani S-N, Baharvand H (2021) Towards maturation of human otic hair cell–like cells in pluripotent stem cell–derived organoid transplants. Cell Tissue Res 28:1–13

    Google Scholar 

  196. Hanjaya-Putra D, Bose V, Shen Y-I, Yee J, Khetan S, Fox-Talbot K, Steenbergen C, Burdick JA, Gerecht S (2011) Controlled activation of morphogenesis to generate a functional human microvasculature in a synthetic matrix. Blood J Am Soc Hematol 118:804–815

    CAS  Google Scholar 

  197. Lesman A, Koffler J, Atlas R, Blinder YJ, Kam Z, Levenberg S (2011) Engineering vessel-like networks within multicellular fibrin-based constructs. Biomaterials 32:7856–7869

    CAS  PubMed  Google Scholar 

  198. Jalili RB, Moeen Rezakhanlou A, Hosseini-Tabatabaei A, Ao Z, Warnock GL, Ghahary A (2011) Fibroblast populated collagen matrix promotes islet survival and reduces the number of islets required for diabetes reversal. J Cell Physiol 226:1813–1819

    CAS  PubMed  Google Scholar 

  199. Du C, Narayanan K, Leong MF, Wan AC (2014) Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 35:6006–6014

    CAS  PubMed  Google Scholar 

  200. Lim TC, Leong MF, Lu H, Du C, Gao S, Wan AC, Ying JY (2013) Follicular dermal papilla structures by organization of epithelial and mesenchymal cells in interfacial polyelectrolyte complex fibers. Biomaterials 34:7064–7072

    CAS  PubMed  Google Scholar 

  201. Skrzypek K, Nibbelink MG, Karbaat LP, Karperien M, van Apeldoorn A, Stamatialis D (2018) An important step towards a prevascularized islet macroencapsulation device—effect of micropatterned membranes on development of endothelial cell network. J Mater Sci Mater Med 29:91

    PubMed  PubMed Central  Google Scholar 

  202. Nibbelink MG, Skrzypek K, Karbaat L, Both S, Plass J, Klomphaar B, van Lente J, Henke S, Karperien M, Stamatialis D (2018) An important step towards a prevascularized islet microencapsulation device: in vivo prevascularization by combination of mesenchymal stem cells on micropatterned membranes. J Mater Sci Mater Med 29:174

    Google Scholar 

  203. Luo B-H, Xiong F, Wang J-P, Li J-H, Zhong M, Liu Q-L, Luo G-Q, Yang X-J, Xiao N, Xie B (2014) Epidermal growth factor-like domain-containing protein 7 (EGFL7) enhances EGF receptor—AKT signaling, epithelial—mesenchymal transition, and metastasis of gastric cancer cells. PLoS ONE 9:e99922

    PubMed  PubMed Central  Google Scholar 

  204. Sand FW, Hörnblad A, Johansson JK, Lorén C, Edsbagge J, Ståhlberg A, Magenheim J, Ilovich O, Mishani E, Dor Y, Ahlgren U (2011) Growth-limiting role of endothelial cells in endoderm development. Dev Biol 352:267–277

    CAS  PubMed  Google Scholar 

  205. Edsbagge J, Johansson JK, Esni F, Luo Y, Radice GL, Semb H (2005) Vascular function and sphingosine-1-phosphate regulate development of the dorsal pancreatic mesenchyme 132:1085–1092

  206. Guney MA, Petersen CP, Boustani A, Duncan MR, Gunasekaran U, Menon R, Warfield C, Grotendorst GR, Means AL, Economides AN (2011) Connective tissue growth factor acts within both endothelial cells and β cells to promote proliferation of developing β cells. Proc Natl Acad Sci 108:15242–15247

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Crawford LA, Guney MA, Oh YA, DeYoung RA, Valenzuela DM, Murphy AJ, Yancopoulos GD, Lyons KM, Brigstock DR, Economides A (2009) Connective tissue growth factor (CTGF) inactivation leads to defects in islet cell lineage allocation and β-cell proliferation during embryogenesis. Mol Endocrinol 23:324–336

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Olerud J, Mokhtari D, Johansson M, Christoffersson G, Lawler J, Welsh N, Carlsson PO (2011) Thrombospondin-1: an islet endothelial cell signal of importance for β-cell function. Diabetes 60:1946–1954

    CAS  PubMed  PubMed Central  Google Scholar 

  209. García-Ocaña A, Vasavada RC, Cebrian A, Reddy V, Takane KK, López-Talavera J-C, Stewart AF (2001) Transgenic overexpression of hepatocyte growth factor in the β-cell markedly improves islet function and islet transplant outcomes in mice. Diabetes 50:2752–2762

    PubMed  Google Scholar 

  210. Garcia-Ocaña A, Takane KK, Syed MA, Philbrick WM, Vasavada RC, Stewart AF (2000) Hepatocyte growth factor overexpression in the islet of transgenic mice increases beta cell proliferation, enhances islet mass, and induces mild hypoglycemia. J Biol Chem 275:1226–1232

    PubMed  Google Scholar 

  211. Johansson M, Mattsson GR, Andersson A, Jansson L, Carlsson PO (2006) Islet endothelial cells and pancreatic β-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147:2315–2324

    CAS  PubMed  Google Scholar 

  212. Yao Y, Zebboudj AF, Shao E, Perez M, Boström K (2006) Regulation of bone morphogenetic protein-4 by matrix GLA protein in vascular endothelial cells involves activin-like kinase receptor 1. J Biol Chem 281:33921–33930

    CAS  PubMed  Google Scholar 

  213. Clarkin CE, Mahmoud M, Liu B, Sobamowo EO, King A, Arthur H, Jones PM, Wheeler-Jone CPJBrn (2016) Modulation of endoglin expression in islets of langerhans by VEGF reveals a novel regulator of islet endothelial cell function. BMC Res Notes 9:362

    PubMed  PubMed Central  Google Scholar 

  214. Sarafidis PA, Bakris GL (2006) Insulin and endothelin: an interplay contributing to hypertension development? J Clin Endocrinol Metab 92:379–385

    PubMed  Google Scholar 

  215. De Carlo E, Milanesi A, Martini C, Maffei P, Sicolo N, Scandellari C (2000) Endothelin-1 and endothelin-3 stimulate insulin release by isolated rat pancreatic islets. J Endocrinol Invest 23:240–245

    PubMed  Google Scholar 

  216. Narayanan S, Loganathan G, Dhanasekaran M, Tucker W, Patel A, Subhashree V, Mokshagundam S, Hughes MG, Williams SK, Balamurugan AN (2017) Intra-islet endothelial cell and β-cell crosstalk: Implication for islet cell transplantation. World J Transplant 7:117

    PubMed  PubMed Central  Google Scholar 

  217. Ahnfelt-Rønne J, Ravassard P, Pardanaud-Glavieux C, Scharfmann R, Serup P (2010) Mesenchymal bone morphogenetic protein signaling is required for normal pancreas development. Diabetes 59:1948–1956

    PubMed  PubMed Central  Google Scholar 

  218. Kobayashi H, Spilde TL, Bhatia AM, Buckingham RB, Hembree MJ, Prasadan K, Preuett BL, Imamura M, Gittes GK (2002) Retinoid signaling controls mouse pancreatic exocrine lineage selection through epithelial–mesenchymal interactions. Gastroenterology 123:1331–1340

    CAS  PubMed  Google Scholar 

  219. Öström M, Loffler KA, Edfalk S, Selander L, Dahl U, Ricordi C, Jeon J, Correa-Medina M, Diez J, Edlund H (2008) Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into β-cells. PLoS ONE 3:e2841

    PubMed  PubMed Central  Google Scholar 

  220. Arregi I, Climent M, Iliev D, Strasser J, Gouignard N, Johansson JK, Singh T, Mazur M, Semb H, Artner I (2016) Retinol dehydrogenase-10 regulates pancreas organogenesis and endocrine cell differentiation via paracrine retinoic acid signaling. Endocrinology 157:4615–4631

    CAS  PubMed  Google Scholar 

  221. Jonckheere N, Mayes E, Shih H-P, Li B, Lioubinski O, Dai X, Sander M (2008) Analysis of mPygo2 mutant mice suggests a requirement for mesenchymal Wnt signaling in pancreatic growth and differentiation. Dev Biol 318:224–235

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Afelik S, Pool B, Schmerr M, Penton C, Jensen J (2015) Wnt7b is required for epithelial progenitor growth and operates during epithelial-to-mesenchymal signaling in pancreatic development. Dev Biol 399:204–217

    CAS  PubMed  Google Scholar 

  223. Apelqvist Å, Ahlgren U, Edlund H (1997) Sonic hedgehog directs specialised mesoderm differentiation in the intestine and pancreas. Curr Biol 7:801–804

    CAS  PubMed  Google Scholar 

  224. Kawahira H, Scheel DW, Smith SB, German MS, Hebrok M (2005) Hedgehog signaling regulates expansion of pancreatic epithelial cells. Dev Biol 280:111–121

    CAS  PubMed  Google Scholar 

  225. Nakayama S, Arakawa M, Uchida T, Ogihara T, Kanno R, Ikeda F, Azuma K, Hirose T, Kawamori R, Fujitani Y (2008) Dose-dependent requirement of patched homologue 1 in mouse pancreatic beta cell mass. Diabetologia 51:1883–1892

    CAS  PubMed  Google Scholar 

  226. Hibsher D, Epshtein A, Oren N, Landsman L (2016) Pancreatic mesenchyme regulates islet cellular composition in a patched/hedgehog-dependent manner. Sci Rep 6:38008

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Yung T, Poon F, Liang M, Coquenlorge S, McGaugh EC, Hui C-c, Wilson MD, Nostro MC, Kim T-H (2019) Sufu-and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun 10:1–17

    CAS  Google Scholar 

  228. Kang S, Park HS, Jo A, Hong SH, Lee HN, Lee YY, Park JS, Jung HS, Chung SS, Park KS (2012) Endothelial progenitor cell cotransplantation enhances islet engraftment by rapid revascularization. Diabetes 61:866–876

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Karaoz E, Genc Z, Demircan PÇ, Aksoy A, Duruksu G (2010) Protection of rat pancreatic islet function and viability by coculture with rat bone marrow-derived mesenchymal stem cells. Cell death Dis 1:e36–e36

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ito T, Itakura S, Todorov I, Rawson J, Asari S, Shintaku J, Nair I, Ferreri K, Kandeel F, Mullen Y (2010) Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function. Transplantation 89:1438–1445

    PubMed  Google Scholar 

  231. Davis NE, Beenken-Rothkopf LN, Mirsoian A, Kojic N, Kaplan DL, Barron AE, Fontaine MJ (2012) Enhanced function of pancreatic islets co-encapsulated with ECM proteins and mesenchymal stromal cells in a silk hydrogel. Biomaterials 33:6691–6697

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Hamilton DC, Shih HH, Schubert RA, Michie SA, Staats PN, Kaplan DL, Fontaine MJ (2017) A silk-based encapsulation platform for pancreatic islet transplantation improves islet function in vivo. J Tissue Eng Regenerat Med 11:887–895

    CAS  Google Scholar 

  233. Kogawa R, Nakamura K, Mochizuki Y (2020) A new islet transplantation method combining mesenchymal stem cells with recombinant peptide pieces, microencapsulated islets, and mesh bags. Biomedicines 8:299

    CAS  PubMed Central  Google Scholar 

  234. Wang H, Li S, Dai Q, Gonzalez A, Tran ON, Sun H, DeFronzo RA, Dean DD, Yeh CK, Chen XD (2020) Culture on a native bone marrow-derived extracellular matrix restores the pancreatic islet basement membrane, preserves islet function, and attenuates islet immunogenicity. FASEB J 34:8044–8056

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by Royan Institute for Stem Cell Biology and Technology (RI-SCBT) and Royan’s Lotus Charity Investment Foundation.

Funding

This study was funded by Royan Institute for Stem Cell Biology and Technology (RI-SCBT) and the Lotus Charity Investment Foundation, Royan Institute.

Author information

Authors and Affiliations

Authors

Contributions

The conception and design of the study was done by [YT]. Administrative support was done by [FCL]. The first draft of the manuscript was written by [ZG, MZ, MKA, and ZG], and all authors commented on previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yaser Tahamtani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelayagh, Z., Zabihi, M., Kazemi Ashtiani, M. et al. Recapitulating pancreatic cell–cell interactions through bioengineering approaches: the momentous role of non-epithelial cells for diabetes cell therapy. Cell. Mol. Life Sci. 78, 7107–7132 (2021). https://doi.org/10.1007/s00018-021-03951-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03951-2

Keywords

Navigation