Skip to main content
Log in

Non-obesogenic doses of fatty acids modulate the functionality of the circadian clock in the liver

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Saturated fatty acids, such as palmitate, lead to circadian disruption in cell culture. Moreover, information regarding the effects of unsaturated fatty acids on circadian parameters is scarce. We aimed at studying the effects of low doses of saturated as well as unsaturated fatty acids on circadian metabolism in vivo and at deciphering the mechanism by which fatty acids convey their effect. Mice were fed non-obesogenic doses of palm or olive oil and hepatocytes were treated with palmitate and oleate. Mice fed non-obesogenic doses of palm oil showed increased signaling towards fatty acid synthesis, while olive oil increased signaling towards fatty acid oxidation. Low doses of palmitate and oleate were sufficient to alter circadian rhythms, due to changes in the expression and/or activity of key metabolic proteins. Palmitate, but not oleate, counteracted the reduction in lipid accumulation and BMAL1-induced expression of mitochondrial genes involved in fatty acid oxidation. Palmitate was also found to interfere with the transcriptional activity of CLOCK:BMAL1 by preventing BMAL1 deacetylation and activation. In addition, palmitate, but not oleate, reduced PER2-mediated transcriptional activation and increased REV-ERBα-mediated transcriptional inhibition of Bmal1. The inhibition of PER2-mediated transcriptional activation by palmitate was achieved by interfering with PER2 nuclear translocation. Indeed, PER2 reduced fat accumulation in hepatocytes and this reduction was prevented by palmitate. Herein, we show that the detrimental metabolic alteration seen with high doses of palmitate manifests itself early on even with non-obesogenic levels. This is achieved by modulating BMAL1 at several levels abrogating its activity and expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941

    Article  CAS  PubMed  Google Scholar 

  2. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, Schultz PG, Kay SA, Takahashi JS, Hogenesch JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  3. Schibler U, Ripperger J, Brown SA (2003) Peripheral circadian oscillators in mammals: time and food. J Biol Rhythms 18:250–260

    Article  PubMed  Google Scholar 

  4. Froy O, Chang DC, Reppert SM (2002) Redox potential: differential roles in dCRY and mCRY1 functions. Curr Biol 12:147–152

    Article  CAS  PubMed  Google Scholar 

  5. Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867

    Article  CAS  PubMed  Google Scholar 

  6. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970

    Article  CAS  PubMed  Google Scholar 

  7. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260

    Article  CAS  PubMed  Google Scholar 

  8. Chawla A, Lazar MA (1993) Induction of Rev-ErbA alpha, an orphan receptor encoded on the opposite strand of the alpha-thyroid hormone receptor gene, during adipocyte differentiation. J Biol Chem 268:16265–16269

    CAS  PubMed  Google Scholar 

  9. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537

    Article  CAS  PubMed  Google Scholar 

  10. Ueda HR, Chen W, Adachi A, Wakamatsu H, Hayashi S, Takasugi T, Nagano M, Nakahama K, Suzuki Y, Sugano S, Iino M, Shigeyoshi Y, Hashimoto S (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539

    Article  CAS  PubMed  Google Scholar 

  11. Canaple L, Rambaud J, Dkhissi-Benyahya O, Rayet B, Tan NS, Michalik L, Delaunay F, Wahli W, Laudet V (2006) Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol Endocrinol 20:1715–1727

    Article  CAS  PubMed  Google Scholar 

  12. Oishi K, Shirai H, Ishida N (2005) CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J 386:575–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga T, Xu H, Kawai S, Awata T, Komoda T, Katayama S (2005) CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J Atheroscler Thromb 12:169–174

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Li S, Liu T, Borjigin J, Lin JD (2007) Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447:477–481

    Article  CAS  PubMed  Google Scholar 

  15. Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM (2005) Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 25:2795–2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Um JH, Yang S, Yamazaki S, Kang H, Viollet B, Foretz M, Chung JH (2007) Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPER2. J Biol Chem 282:20794–20798

    Article  CAS  PubMed  Google Scholar 

  17. Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, Thompson CB, Evans RM (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326:437–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lipton JO, Yuan ED, Boyle LM, Ebrahimi-Fakhari D, Kwiatkowski E, Nathan A, Guttler T, Davis F, Asara JM, Sahin M (2015) The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161:1138–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  20. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD + salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsieh M, Yang S, Tseng H, Hwang L-L, Chen C, Shieh K (2010) Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes 34:227–239

    Article  CAS  Google Scholar 

  23. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6:414–421

    Article  CAS  PubMed  Google Scholar 

  24. Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A (2006) High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 23:905–914

    Article  CAS  PubMed  Google Scholar 

  25. Barnea M, Madar Z, Froy O (2010) High-fat diet followed by fasting disrupts circadian expression of adiponectin signaling pathway in muscle and adipose tissue. Obesity (Silver Spring) 18:230–238

    Article  CAS  Google Scholar 

  26. Adamovich Y, Aviram R, Asher G (2015) The emerging roles of lipids in circadian control. BBA Mol Cell Biol Lipids 1851:1017–1025

    Article  CAS  Google Scholar 

  27. Eckel-Mahan KL, Patel VR, de Mateo S, Orozco-Solis R, Ceglia NJ, Sahar S, Dilag-Penilla SA, Dyar KA, Baldi P, Sassone-Corsi P (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155:1464–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ibrahim SH, Akazawa Y, Cazanave SC, Bronk SF, Elmi NA, Werneburg NW, Billadeau DD, Gores GJ (2011) Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis. J Hepatol 54:765–772

    Article  CAS  PubMed  Google Scholar 

  29. Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100:3077–3082

    Article  CAS  PubMed  Google Scholar 

  30. Fick LJ, Fick GH, Belsham DD (2011) Palmitate alters the rhythmic expression of molecular clock genes and orexigenic neuropeptide Y mRNA levels within immortalized, hypothalamic neurons. Biochem Biophys Res Commun 413:414–419

    Article  CAS  PubMed  Google Scholar 

  31. Tong X, Zhang D, Arthurs B, Li P, Durudogan L, Gupta N, Yin L (2015) Palmitate inhibits SIRT1-dependent BMAL1/CLOCK interaction and disrupts circadian gene oscillations in hepatocytes. PLoS ONE 10:e0130047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gil-Lozano M, Wu WK, Martchenko A, Brubaker PL (2016) High-fat diet and palmitate alter the rhythmic secretion of glucagon-like peptide-1 by the rodent L-cell. Endocrinology 157:586–599

    Article  CAS  PubMed  Google Scholar 

  33. Greco JA, Oosterman JE, Belsham DD (2014) Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 307:R1049–R1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim SM, Neuendorff N, Chapkin RS, Earnest DJ (2016) Role of inflammatory signaling in the differential effects of saturated and poly-unsaturated fatty acids on peripheral circadian clocks. EBioMedicine 7:100–111

    Article  PubMed  PubMed Central  Google Scholar 

  35. Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100:965–973

    Article  CAS  PubMed  Google Scholar 

  36. Sherman H, Frumin I, Gutman R, Chapnik N, Lorentz A, Meylan J, le Coutre J, Froy O (2011) Long-term restricted feeding alters circadian expression and reduces the level of inflammatory and disease markers. J Cell Mol Med 15:2745–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sherman H, Froy O (2008) Expression of human β-defensin 1 is regulated via c-myc and the biological clock. Mol Immunol 45:3163–3167

    Article  CAS  PubMed  Google Scholar 

  38. Aharoni-Simon M, Reifen R, Tirosh O (2006) ROS-production-mediated activation of AP-1 but not NFκB inhibits glutamate-induced HT4 neuronal cell death. Antioxid Redox Signal 8:1339–1349

    Article  CAS  PubMed  Google Scholar 

  39. Froy O, Garaulet M (2018) The circadian clock in white and brown adipose tissue: mechanistic, endocrine, and clinical aspects. Endocr Rev 39:261–273

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Article  CAS  PubMed  Google Scholar 

  41. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  CAS  PubMed  Google Scholar 

  42. Schmutz I, Ripperger JA, Baeriswyl-Aebischer S, Albrecht U (2010) The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes Dev 24:345–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barnea M, Madar Z, Froy O (2009) High-fat diet delays and fasting advances the circadian expression of adiponectin signaling components in mouse liver. Endocrinology 150:161–168

    Article  CAS  PubMed  Google Scholar 

  44. Jacobi D, Liu S, Burkewitz K, Kory N, Knudsen NH, Alexander RK, Unluturk U, Li X, Kong X, Hyde AL, Gangl MR, Mair WB, Lee CH (2015) Hepatic Bmal1 regulates rhythmic mitochondrial dynamics and promotes metabolic fitness. Cell Metab 22:709–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Akashi M, Okamoto A, Tsuchiya Y, Todo T, Nishida E, Node K (2014) A positive role for PERIOD in mammalian circadian gene expression. Cell Rep 7:1056–1064

    Article  CAS  PubMed  Google Scholar 

  46. Wang M, Zhong Z, Zhong Y, Zhang W, Wang H (2014) The zebrafish Period2 protein positively regulates the circadian clock through mediation of RAR-related orphan receptor alpha (Rorα). JBC. M114:605022

    Google Scholar 

Download references

Acknowledgements

We thank Prof. Gad Asher, the Weizmann Institute of Science, for his kind contribution of plasmids harboring Per2, Rev-erbα and the Bmal1-luc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oren Froy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tal, Y., Chapnik, N. & Froy, O. Non-obesogenic doses of fatty acids modulate the functionality of the circadian clock in the liver. Cell. Mol. Life Sci. 76, 1795–1806 (2019). https://doi.org/10.1007/s00018-019-03023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03023-6

Keywords

Navigation