Skip to main content

Advertisement

Log in

Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Herpes simplex virus type-1 (HSV-1) is a ubiquitous pathogen that infects a large majority of the human population worldwide. It is also a leading cause of infection-related blindness in the developed world. HSV-1 infection of the cornea begins with viral entry into resident cells via a multistep process that involves interaction of viral glycoproteins and host cell surface receptors. Once inside, HSV-1 infection induces a chronic immune-inflammatory response resulting in corneal scarring, thinning and neovascularization. This leads to development of various ocular diseases such as herpes stromal keratitis, resulting in visual impairment and eventual blindness. HSV-1 can also invade the central nervous system and lead to encephalitis, a relatively common cause of sporadic fetal encephalitis worldwide. In this review, we discuss the pathological processes activated by corneal HSV-1 infection and existing antiviral therapies as well as novel therapeutic options currently under development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agelidis AM, Hadigal SR, Jaishankar D, Shukla D (2017) Viral activation of heparanase drives pathogenesis of herpes simplex virus-1. Cell Rep 20:439–450

    Article  CAS  Google Scholar 

  2. Ahmad R, El Bassam S, Cordeiro P, Menezes J (2008) Requirement of TLR2-mediated signaling for the induction of IL-15 gene expression in human monocytic cells by HSV-1. Blood 112:2360–2368. https://doi.org/10.1182/blood-2008-02-137711

    Article  CAS  PubMed  Google Scholar 

  3. Akhtar J, Tiwari V, Oh MJ, Kovacs M, Jani A, Kovacs SK, Valyi-Nagy T, Shukla D (2008) HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Invest Ophthalmol Vis Sci 49:4026–4035. https://doi.org/10.1167/iovs.08-1807

    Article  PubMed  PubMed Central  Google Scholar 

  4. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  CAS  Google Scholar 

  5. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680. https://doi.org/10.1038/90609

    Article  CAS  PubMed  Google Scholar 

  6. Amano S, Rohan R, Kuroki M, Tolentino M, Adamis AP (1998) Requirement for vascular endothelial growth factor in wound- and inflammation-related corneal neovascularization. Invest Ophthalmol Vis Sci 39:18–22

    CAS  PubMed  Google Scholar 

  7. Andersen LL, Mork N, Reinert LS, Kofod-Olsen E, Narita R, Jorgensen SE, Skipper KA, Honing K, Gad HH, Ostergaard L, Orntoft TF, Hornung V, Paludan SR, Mikkelsen JG, Fujita T, Christiansen M, Hartmann R, Mogensen TH (2015) Functional IRF3 deficiency in a patient with herpes simplex encephalitis. J Exp Med 212:1371–1379. https://doi.org/10.1084/jem.20142274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Antoine T, Park PJ, Shukla D (2013) Glycoprotein targeted therapeutics: a new era of anti-herpes simplex virus-1 therapeutics. Rev Med Virol 23:194–208. https://doi.org/10.1002/rmv.1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Azar DT (2006) Corneal angiogenic privilege: angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing (an american ophthalmological society thesis). Trans Am Ophthalmol Soc 104:264–302

    PubMed  PubMed Central  Google Scholar 

  10. Azher TN, Yin X, Stuart PM (2017) Understanding the role of chemokines and cytokines in experimental models of herpes simplex keratitis. J Immunol Res. https://doi.org/10.1155/2017/7261980

    Article  PubMed  PubMed Central  Google Scholar 

  11. Basil MC, Levy BD (2015) Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 16:51–67. https://doi.org/10.1038/nri.2015.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bauer D, Alt M, Dirks M, Buch A, Heilingloh CS, Dittmer U, Giebel B, Görgens A, Palapys V, Kasper M, Eis-Hübinger AM, Sodeik B, Heiligenhaus A, Roggendorf M, Krawczyk A (2017) A Therapeutic Antiviral Antibody Inhibits the Anterograde Directed Neuron-to-Cell Spread of Herpes Simplex Virus and Protects against Ocular Disease. 8:2115. https://doi.org/10.3389/fmicb.2017.02115

    Article  Google Scholar 

  13. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z, Hanahan D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744. https://doi.org/10.1038/35036374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bhattacharjee PS, Neumann DM, Foster TP, Clement C, Singh G, Thompson HW, Kaufman HE, Hill JM (2008) Effective treatment of ocular HSK with a human apolipoprotein E mimetic peptide in a mouse eye model. Invest Ophthalmol Vis Sci 49:4263–4268. https://doi.org/10.1167/iovs.08-2077

    Article  PubMed  Google Scholar 

  15. Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouet J, Derbin C, Perret G, Mazie JC (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533

    Article  CAS  Google Scholar 

  16. Biswas PS, Rouse BT (2005) Early events in HSV keratitis—setting the stage for a blinding disease. Microbes Infect 7:799–810. https://doi.org/10.1016/j.micinf.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  17. Boivin N, Menasria R, Piret J, Boivin G (2012) Modulation of TLR9 response in a mouse model of herpes simplex virus encephalitis. Antiviral Res 96:414–421. https://doi.org/10.1016/j.antiviral.2012.09.022

    Article  CAS  PubMed  Google Scholar 

  18. Bradshaw MJ, Venkatesan A (2016) Herpes simplex virus-1 encephalitis in adults: pathophysiology. Diag Manag 13:493–508. https://doi.org/10.1007/s13311-016-0433-7

    Article  CAS  Google Scholar 

  19. Brandt CR, Akkarawongsa R, Altmann S, Jose G, Kolb AW, Waring AJ, Lehrer RI (2007) Evaluation of a theta-defensin in a Murine model of herpes simplex virus type 1 keratitis. Invest Ophthalmol Vis Sci 48:5118–5124

    Article  Google Scholar 

  20. Buela K-G, Hendricks RL (2015) Cornea-infiltrating and lymph node dendritic cells contribute to CD4 + T cell expansion after herpes simplex virus-1 ocular infection. J Immunol 194:379–387. https://doi.org/10.4049/jimmunol.1402326

    Article  CAS  PubMed  Google Scholar 

  21. Carfi A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley DC (2001) Herpes simplex virus glycoprotein D bound to the human receptor HveA. Mol Cell 8:169–179

    Article  CAS  Google Scholar 

  22. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395. https://doi.org/10.1038/74651

    Article  CAS  PubMed  Google Scholar 

  23. Cathcart HM, Zheng M, Covar JJ, Liu Y, Podolsky R, Atherton SS (2011) Interferon-gamma, macrophages, and virus spread after HSV-1 injection. Invest Ophthalmol Vis Sci 52:3984–3993. https://doi.org/10.1167/iovs.10-6449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang JH, Gabison EE, Kato T, Azar DT (2001) Corneal neovascularization. Curr Opin Ophthalmol 12:242–249

    Article  CAS  Google Scholar 

  25. Chen Y, Chen Y, Huang L, Yu J (2012) Evaluation of heparanase and matrix metalloproteinase-9 in patients with cutaneous malignant melanoma. J Dermatol 39:339–343. https://doi.org/10.1111/j.1346-8138.2011.01441.x

    Article  CAS  PubMed  Google Scholar 

  26. Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D (2006) A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174:1009–1021

    Article  CAS  Google Scholar 

  27. Conrady CD, Drevets DA, Carr DJJ (2010) Herpes simplex type I (HSV-1) infection of the nervous system: is an immune response a good thing? J Neuroimmunol 220:1–9. https://doi.org/10.1016/j.jneuroim.2009.09.013

    Article  CAS  PubMed  Google Scholar 

  28. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D’Amore PA, Dana MR, Wiegand SJ, Streilein JW (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050. https://doi.org/10.1172/JCI20465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Delrieu I, Arnaud E, Ferjoux G, Bayard F, Faye JC (1998) Overexpression of the FGF-2 24-kDa isoform up-regulates IL-6 transcription in NIH-3T3 cells. FEBS Lett 436:17–22. https://doi.org/10.1016/S0014-5793(98)01086-2

    Article  CAS  PubMed  Google Scholar 

  30. Eliceiri BP, Paul R, Schwartzberg PL, Hood JD, Leng J, Cheresh DA (1999) Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol Cell 4:915–924

    Article  CAS  Google Scholar 

  31. Elion GB (1982) Mechanism of action and selectivity of acyclovir. Am J Med 73:7–13. https://doi.org/10.1016/0002-9343(82)90055-9

    Article  CAS  PubMed  Google Scholar 

  32. Englund JA, Zimmerman ME, Swierkosz EM, Goodman JL, Scholl DR, Balfour HH Jr (1990) Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med 112:416–422

    Article  CAS  Google Scholar 

  33. Farooq AV, Valyi-Nagy T, Shukla D (2010) Mediators and mechanisms of herpes simplex virus entry into ocular cells. Curr Eye Res 35:445–450. https://doi.org/10.3109/02713681003734841

    Article  PubMed  PubMed Central  Google Scholar 

  34. Field AK, Biron KK (1994) “The end of innocence” revisited: resistance of herpesviruses to antiviral drugs. Clin Microbiol Rev 7:1–13

    Article  CAS  Google Scholar 

  35. Frank GM, Buela K-G, Maker DM, Harvey SAK, Hendricks RL (2012) Early responding dendritic cells direct the local NK response to control herpes simplex virus 1 infection within the cornea. J Immunol 188:1350–1359. https://doi.org/10.4049/jimmunol.1101968

    Article  CAS  PubMed  Google Scholar 

  36. Fuster MM, Wang L (2010) Endothelial heparan sulfate in angiogenesis. Prog Mol Biol Transl Sci. https://doi.org/10.1016/s1877-1173(10)93009-3

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gangappa S, Deshpande SP, Rouse BT (2000) Bystander activation of CD4 + T cells accounts for herpetic ocular lesions. Invest Ophthalmol Vis Sci 41:453–459

    CAS  PubMed  Google Scholar 

  38. Gebhardt BM, Varnell ED, Kaufman HE (2005) Inhibition of cyclooxygenase 2 synthesis suppresses Herpes simplex virus type 1 reactivation. J Ocul Pharmacol Ther 21:114–120. https://doi.org/10.1089/jop.2005.21.114

    Article  CAS  PubMed  Google Scholar 

  39. Gimenez F, Mulik S, Veiga-Parga T, Bhela S, Rouse BT (2015) Robo 4 counteracts angiogenesis in herpetic stromal keratitis. Plos One 10:e0141925. https://doi.org/10.1371/journal.pone.0141925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA (1995) Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270:1189–1192

    Article  CAS  Google Scholar 

  41. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208:2083–2098. https://doi.org/10.1084/jem.20101568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gurung HR, Carr MM, Bryant K, Chucair-Elliott AJ, Carr DJJ (2018) Fibroblast growth factor-2 drives and maintains progressive corneal neovascularization following HSV-1 infection. Mucosal Immunol 11:172–185. https://doi.org/10.1038/mi.2017.26

    Article  CAS  PubMed  Google Scholar 

  43. Hacker H, Vabulas RM, Takeuchi O, Hoshino K, Akira S, Wagner H (2000) Immune cell activation by bacterial CpG-DNA through myeloid differentiation marker 88 and tumor necrosis factor receptor-associated factor (TRAF)6. J Exp Med 192:595–600. https://doi.org/10.1084/jem.192.4.595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hadigal SR, Agelidis AM, Karasneh GA, Antoine TE, Yakoub AM, Ramani VC, Djalilian AR, Sanderson RD, Shukla D (2015) Heparanase is a host enzyme required for herpes simplex virus-1 release from cells. Nat Commun 6:6985. https://doi.org/10.1038/ncomms7985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hill JM, Bhattacharjee PS, Neumann DM (2007) Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Exp Eye Res 84:801–811

    Article  CAS  Google Scholar 

  46. Hochrein H, Schlatter B, O’Keeffe M, Wagner C, Schmitz F, Schiemann M, Bauer S, Suter M, Wagner H (2004) Herpes simplex virus type-1 induces IFN-a production via Toll-like receptor 9-dependent and -independent pathways. Proc Natl Acad Sci U S A 101:11416–11421. https://doi.org/10.1073/pnas.0403555101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Article  CAS  Google Scholar 

  48. Jaishankar D, Buhrman JS, Valyi-Nagy T, Gemeinhart RA, Shukla D (2016) Extended release of an anti-heparan sulfate peptide from a contact lens suppresses corneal herpes simplex virus-1 infection. Invest Ophthalmol Vis Sci 57:169–180. https://doi.org/10.1167/iovs.15-18365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jaishankar D, Yakoub AM, Yadavalli T, Agelidis A, Thakkar N, Hadigal S, Ames J, Shukla D (2018) An off-target effect of BX795 blocks herpes simplex virus type 1 infection of the eye. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan5861

    Article  PubMed  Google Scholar 

  50. Jayamanne DG, Vize C, Ellerton CR, Morgan SJ, Gillie RF (1997) Severe reversible ocular anterior segment ischaemia following topical trifluorothymidine (F3T) treatment for herpes simplex keratouveitis. Eye (Lond) 11(Pt 5):757–759. https://doi.org/10.1038/eye.1997.193

    Article  Google Scholar 

  51. Jiang YC, Feng H, Lin YC, Guo XR (2016) New strategies against drug resistance to herpes simplex virus. Int J Oral Sci 8:1–6. https://doi.org/10.1038/ijos.2016.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaufman HE, Varnell ED, Gebhardt BM, Thompson HW, Atwal E, Rubsamen-Waigmann H, Kleymann G (2008) Efficacy of a helicase-primase inhibitor in animal models of ocular herpes simplex virus type 1 infection. J Ocul Pharmacol Ther 24:34–42. https://doi.org/10.1089/jop.2007.0084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krawczyk A, Arndt MAE, Grosse-Hovest L, Weichert W, Giebel B, Dittmer U, Hengel H, Jäger D, Schneweis KE, Eis-Hübinger AM, Roggendorf M, Krauss J (2013) Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody. Proc Natl Acad Sci USA 110:6760

    Article  CAS  Google Scholar 

  54. Kreuger J, Phillipson M (2016) Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 15:125–142. https://doi.org/10.1038/nrd.2015.2

    Article  CAS  PubMed  Google Scholar 

  55. Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Nat Commun 103:1433–1437. https://doi.org/10.1182/blood-2003-08-2674

    Article  CAS  Google Scholar 

  56. Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101:1315–1320. https://doi.org/10.1073/pnas.0308057100

    Article  CAS  PubMed  Google Scholar 

  57. Kvanta A, Sarman S, Fagerholm P, Seregard S, Steen B (2000) Expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in inflammation-associated corneal neovascularization. Exp Eye Res 70:419–428. https://doi.org/10.1006/exer.1999.0790

    Article  CAS  PubMed  Google Scholar 

  58. Lee S, Zheng M, Kim B, Rouse BT (2002) Role of matrix metalloproteinase-9 in angiogenesis caused by ocular infection with herpes simplex virus. J Clin Invest 110:1105–1111. https://doi.org/10.1172/JCI200215755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liang X, Yuan L, Hu J, Yu H, Li T, Lin S, Tang S (2012) Phosphomannopentaose sulfate (PI-88) suppresses angiogenesis by downregulating heparanase and vascular endothelial growth factor in an oxygen-induced retinal neovascularization animal model. Mol Vis 18:1649–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Liang Y, Vogel JL, Narayanan A, Peng H, Kristie TM (2009) Inhibition of the histone demethylase LSD1 blocks alpha-herpesvirus lytic replication and reactivation from latency. Nat Med 15:1312–1317. https://doi.org/10.1038/nm.2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liesegang TJ (2001) Herpes simplex virus epidemiology and ocular importance. Cornea 20:1–13. https://doi.org/10.1097/00003226-200101000-00001

    Article  CAS  PubMed  Google Scholar 

  62. Liu J, Crepin M, Liu J-, Barritault D, Ledoux D (2002) FGF-2 and TPA induce matrix metalloproteinase-9 secretion in MCF-7 cells through PKC activation of the Ras/ERK pathway. Biochem Biophys Res Commun 293:1174–1182. https://doi.org/10.1016/S0006-291X(02)00350-9

    Article  CAS  PubMed  Google Scholar 

  63. Liu T, Khanna KM, Chen X, Fink DJ, Hendricks RL (2000) Cd8(+) T cells can block herpes simplex virus Type 1 (HSV-1) reactivation from latency in sensory neurons. J Exp Med 191:1459–1466

    Article  CAS  Google Scholar 

  64. Liu X, Fitzgerald K, Kurt-Jones E, Finberg R, Knipe DM (2008) Herpesvirus tegument protein activates NF-κB signaling through the TRAF6 adaptor protein. Proc Natl Acad Sci USA 105:11335–11339. https://doi.org/10.1073/pnas.0801617105

    Article  PubMed  Google Scholar 

  65. Lundberg P, Ramakrishna C, Brown J, Tyszka JM, Hamamura M, Hinton DR, Kovats S, Nalcioglu O, Weinberg K, Openshaw H, Cantin EM (2008) The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82:7078–7088. https://doi.org/10.1128/JVI.00619-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maddula S, Davis DK, Maddula S, Burrow MK, Ambati BK (2011) Horizons in therapy for corneal. Angiogenesis 118:591–599. https://doi.org/10.1016/j.ophtha.2011.01.041

    Article  Google Scholar 

  67. Maggs DJ, Chang E, Nasisse MP, Mitchell WJ (1998) Persistence of herpes simplex virus type 1 DNA in chronic conjunctival and eyelid lesions of mice. J Virol 72:9166–9172

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Mansur DS, Kroon EG, Nogueira ML, Arantes RME, Rodrigues SCO, Akira S, Gazzinelli RT, Campos MA (2005) Lethal encephalitis in myeloid differentiation factor 88-deficient mice infected with herpes simplex virus 1. Am J Pathol 166:1419–1426

    Article  CAS  Google Scholar 

  69. Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D’Angelo A, Onisto M, Lupo A (2012) Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem 287:1478–1488. https://doi.org/10.1074/jbc.M111.279836

    Article  CAS  PubMed  Google Scholar 

  70. Maudgal PC, Van Damme B, Missotten L (1983) Corneal epithelial dysplasia after trifluridine use. Graefes Arch Clin Exp Ophthalmol 220:6–12

    Article  CAS  Google Scholar 

  71. Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300. https://doi.org/10.1126/science.1068883

    Article  CAS  PubMed  Google Scholar 

  72. Menachery VD, Pasieka TJ, Leib DA (2010) Interferon regulatory factor 3-dependent pathways are critical for control of herpes simplex virus type 1 central nervous system infection. J Virol 84:9685–9694. https://doi.org/10.1128/JVI.00706-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Modi S, Van L, Gewirtzman A, Mendoza N, Bartlett B, Tremaine AM, Tyring S (2008) Single-day treatment for orolabial and genital herpes: a brief review of pathogenesis and pharmacology. Ther Clin Risk Manag 4:409–417

    Article  CAS  Google Scholar 

  74. Morris JE, Zobell S, Yin XT, Zakeri H, Summers BC, Leib DA, Stuart PM (2012) Mice with mutations in Fas and Fas ligand demonstrate increased herpetic stromal keratitis following corneal infection with HSV-1. J Immunol 188:793–799. https://doi.org/10.4049/jimmunol.1102251

    Article  CAS  PubMed  Google Scholar 

  75. Mulik S, Xu J, Reddy PBJ, Rajasagi NK, Gimenez F, Sharma S, Lu PY, Rouse BT (2012) Role of miR-132 in angiogenesis after ocular infection with herpes simplex virus. Am J Pathol 181:525–534. https://doi.org/10.1016/j.ajpath.2012.04.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Oh MJ, Akhtar J, Desai P, Shukla D (2010) A role for heparan sulfate in viral surfing. Biochem Biophys Res Commun 391:176–181. https://doi.org/10.1016/j.bbrc.2009.11.027

    Article  CAS  PubMed  Google Scholar 

  77. Paludan SR, Bowie AG, Horan KA, Fitzgerald KA (2011) Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 11:143–154. https://doi.org/10.1038/nri2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Park PJ, Antoine TE, Farooq AV, Valyi-Nagy T, Shukla D (2013) An investigative peptide-acyclovir combination to control herpes simplex virus type 1 ocular infection. Invest Ophthalmol Vis Sci 54:6373–6381. https://doi.org/10.1167/iovs.13-12832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Perng GC, Jones C (2010) Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. Interdiscip Perspect Infect Dis 2010:262415. https://doi.org/10.1155/2010/262415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pope LE, Marcelletti JF, Katz LR, Lin JY, Katz DH, Parish ML, Spear PG (1998) The anti-herpes simplex virus activity of n-docosanol includes inhibition of the viral entry process. Antiviral Res 40:85–94

    Article  CAS  Google Scholar 

  81. Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636. https://doi.org/10.1074/jbc.M806266200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajasagi NK, Bhela S, Varanasi SK, Rouse BT (2017) Frontline Science: aspirin-triggered resolvin D1 controls herpes simplex virus-induced corneal immunopathology. J Leukoc Biol 102:1159–1171. https://doi.org/10.1189/jlb.3HI1216-511RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rajasagi NK, Reddy PB, Mulik S, Gjorstrup P, Rouse BT (2013) Neuroprotectin D1 reduces the severity of herpes simplex virus-induced corneal immunopathology. Invest Ophthalmol Vis Sci 54:6269–6279. https://doi.org/10.1167/iovs.13-12152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Rajasagi NK, Reddy PB, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT (2011) Controlling herpes simplex virus-induced ocular inflammatory lesions with the lipid-derived mediator resolvin E1. J Immunol 186:1735–1746. https://doi.org/10.4049/jimmunol.1003456

    Article  CAS  PubMed  Google Scholar 

  85. Rajasagi NK, Suryawanshi A, Sehrawat S, Reddy PB, Mulik S, Hirashima M, Rouse BT (2012) Galectin-1 reduces the severity of herpes simplex virus-induced ocular immunopathological lesions. J Immunol 188:4631–4643. https://doi.org/10.4049/jimmunol.1103063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD (2011) Heparanase plays a dual role in driving hepatocyte growth factor (HGF) signaling by enhancing HGF expression and activity. J Biol Chem 286:6490–6499. https://doi.org/10.1074/jbc.M110.183277

    Article  CAS  PubMed  Google Scholar 

  87. Rogge M, Yin X, Godfrey L, Lakireddy P, Potter CA, Del Rosso CR, Stuart PM (2015) Therapeutic use of soluble fas ligand ameliorates acute and recurrent herpetic stromal keratitis in mice. Invest Ophthalmol Vis Sci 56:6377–6386. https://doi.org/10.1167/iovs.15-16588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roizman B, Knipe DM, Whitley RJ (2007) Herpes simplex viruses. Clin Infect Dis 1:2503–2602

    Google Scholar 

  89. Sarangi PP, Kim B, Kurt-Jones E, Rouse BT (2007) Innate recognition network driving herpes simplex virus-induced corneal immunopathology: role of the toll pathway in early inflammatory events in stromal keratitis. J Virol 81:11128–11138. https://doi.org/10.1128/JVI.01008-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sauter MM, Gauger JJL, Brandt CR (2014) Oligonucleotides designed to inhibit TLR9 block herpes simplex virus type 1 infection at multiple steps. Antiviral Res. https://doi.org/10.1016/j.antiviral.2014.06.015

    Article  PubMed  PubMed Central  Google Scholar 

  91. Scheppke L, Aguilar E, Gariano RF, Jacobson R, Hood J, Doukas J, Cao J, Noronha G, Yee S, Weis S, Martin MB, Soll R, Cheresh DA, Friedlander M (2008) Retinal vascular permeability suppression by topical application of a novel VEGFR2/Src kinase inhibitor in mice and rabbits. J Clin Invest 118:2337–2346. https://doi.org/10.1172/JCI33361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673. https://doi.org/10.1083/jcb.141.7.1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Serhan CN (2014) Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature 510:92–101. https://doi.org/10.1038/nature13479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharma S, Mulik S, Kumar N, Suryawanshi A, Rouse BT (2011) An anti-inflammatory role of VEGFR2/Src kinase inhibitor in herpes simplex virus 1-induced immunopathology. J Virol 85:5995–6007. https://doi.org/10.1128/JVI.00034-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510. https://doi.org/10.1172/JCI13799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith JS, Robinson NJ (2002) Age-specific prevalence of infection with herpes simplex virus types 2 and 1: a global review. J Infect Dis 186(Suppl 1):3

    Article  Google Scholar 

  97. St Vincent MR, Colpitts CC, Ustinov AV, Muqadas M, Joyce MA, Barsby NL, Epand RF, Epand RM, Khramyshev SA, Valueva OA, Korshun VA, Tyrrell DL, Schang LM (2010) Rigid amphipathic fusion inhibitors, small molecule antiviral compounds against enveloped viruses. Proc Natl Acad Sci USA 107:17339–17344. https://doi.org/10.1073/pnas.1010026107

    Article  PubMed  Google Scholar 

  98. Stuart PM, Griffith TS, Usui N, Pepose J, Yu X, Ferguson TA (1997) CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J Clin Invest 99:396–402

    Article  CAS  Google Scholar 

  99. Stuart PM, Pan F, Plambeck S, Ferguson TA (2003) FasL-Fas interactions regulate neovascularization in the cornea. Invest Ophthalmol Vis Sci 44:93–98

    Article  Google Scholar 

  100. Stumpf TH, Shimeld C, Easty DL, Hill TJ (2001) Cytokine production in a murine model of recurrent herpetic stromal keratitis. Invest Ophthalmol Vis Sci 42:372–378

    CAS  PubMed  Google Scholar 

  101. Stumpf TH, Case R, Shimeld C, Easty DL, Hill TJ (2002) Primary herpes simplex virus type 1 infection of the eye triggers similar immune responses in the cornea and the skin of the eyelids. J Gen Virol 83:1579–1590. https://doi.org/10.1099/0022-1317-83-7-1579

    Article  CAS  PubMed  Google Scholar 

  102. Su AR, Qiu M, Li YL, Xu WT, Song SW, Wang XH, Song HY, Zheng N, Wu ZW (2017) BX-795 inhibits HSV-1 and HSV-2 replication by blocking the JNK/p38 pathways without interfering with PDK1 activity in host cells. Acta Pharmacol Sin 38:402–414. https://doi.org/10.1038/aps.2016.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Suryawanshi A, Mulik S, Sharma S, Reddy PBJ, Sehrawat S, Rouse BT (2011) Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor. J Immunol 186:3653–3665. https://doi.org/10.4049/jimmunol.1003239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9. https://doi.org/10.1016/j.smim.2003.10.003

    Article  CAS  PubMed  Google Scholar 

  105. Tammela T, Alitalo K (2010) Lymphangiogenesis: molecular mechanisms and future promise. Cell 140:460–476. https://doi.org/10.1016/j.cell.2010.01.045

    Article  CAS  PubMed  Google Scholar 

  106. Tang D, Piao Y, Zhao S, Mu X, Li S, Ma W, Song Y, Wang J, Zhao W, Zhang Q (2014) Expression and correlation of matrix metalloproteinase-9 and heparanase in patients with breast cancer. Med Oncol. https://doi.org/10.1007/s12032-014-0026-4

    Article  PubMed  Google Scholar 

  107. Thomas J, Gangappa S, Kanangat S, Rouse BT (1997) On the essential involvement of neutrophils in the immunopathologic disease: herpetic stromal keratitis. J Immunol 158:1383–1391

    CAS  PubMed  Google Scholar 

  108. Tiwari V, Clement C, Xu D, Valyi-Nagy T, Yue BY, Liu J, Shukla D (2006) Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 80:8970–8980

    Article  CAS  Google Scholar 

  109. Tiwari V, Liu J, Valyi-Nagy T, Shukla D (2011) Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo. J Biol Chem 286:25406–25415. https://doi.org/10.1074/jbc.M110.201103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tiwari V, Oh MJ, Kovacs M, Shukla SY, Valyi-Nagy T, Shukla D (2008) Role for nectin-1 in herpes simplex virus 1 entry and spread in human retinal pigment epithelial cells. FEBS J 275:5272–5285. https://doi.org/10.1111/j.1742-4658.2008.06655.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Toma HS, Murina AT, Areaux RG Jr, Neumann DM, Bhattacharjee PS, Foster TP, Kaufman HE, Hill JM (2008) Ocular HSV-1 latency, reactivation and recurrent disease. Semin Ophthalmol 23:249–273. https://doi.org/10.1080/08820530802111085

    Article  PubMed  Google Scholar 

  112. Tsatsos M, MacGregor C, Athanasiadis I, Moschos MM, Hossain P, Anderson D (2016) Herpes simplex virus keratitis: an update of the pathogenesis and current treatment with oral and topical antiviral agents. Clin Exp Ophthalmol 44:824–837. https://doi.org/10.1111/ceo.12785

    Article  PubMed  Google Scholar 

  113. van Velzen M, van de Vijver DA, van Loenen FB, Osterhaus AD, Remeijer L, Verjans GM (2013) Acyclovir prophylaxis predisposes to antiviral-resistant recurrent herpetic keratitis. J Infect Dis 208:1359–1365. https://doi.org/10.1093/infdis/jit350

    Article  CAS  PubMed  Google Scholar 

  114. Whitley RJ, Lakeman F (1995) Herpes simplex virus infections of the central nervous system: therapeutic and diagnostic considerations. Clin Infect Dis 20:414–420. https://doi.org/10.1093/clinids/20.2.414

    Article  CAS  PubMed  Google Scholar 

  115. Wuest T, Zheng M, Efstathiou S, Halford WP, Carr DJJ (2011) The herpes simplex virus-1 transactivator infected cell protein-4 drives VEGF-A dependent Neovascularization. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002278

    Article  PubMed  PubMed Central  Google Scholar 

  116. Yadavalli T, Agelidis A, Jaishankar D, Mangano K, Thakkar N, Penmetcha K, Shukla D (2017) Targeting herpes simplex virus-1 gD by a DNA aptamer can be an effective new strategy to curb viral infection. Mol Ther Nucleic Acids 9:365–378. https://doi.org/10.1016/j.omtn.2017.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, Herold BC, Wagar EA, Lehrer RI (2004) Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol 78:5147–5156

    Article  CAS  Google Scholar 

  118. Yildiz C, Ozsurekci Y, Gucer S, Cengiz AB, Topaloglu R (2013) Acute kidney injury due to acyclovir. CEN Case Rep 2:38–40. https://doi.org/10.1007/s13730-012-0035-0

    Article  PubMed  Google Scholar 

  119. Yoon KC, Heo H, Kang IS, Lee MC, Kim KK, Park SH, Cho KO (2008) Effect of topical cyclosporin A on herpetic stromal keratitis in a mouse model. Cornea 27:454–460. https://doi.org/10.1097/ICO.0b013e318160602d

    Article  PubMed  Google Scholar 

  120. Zhang S, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizu V, Lorenzo L, Puel A, Picard C, Chapgier A, Plancoulaine S, Titeux M, Cognet C, Von Bernuth H, Ku C, Casrouge A, Zhang X, Barreiro L, Leonard J, Hamilton C, Lebon P, Hron B, Valle L, Quintana-Murci L, Hovnanian A, Rozenberg F, Vivier E, Geissmann F, Tardieu M, Abel L, Casanova J (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317:1522–1527. https://doi.org/10.1126/science.1139522

    Article  CAS  PubMed  Google Scholar 

  121. Zheng M, Deshpande S, Lee S, Ferrara N, Rouse BT (2001) Contribution of vascular endothelial growth factor in the neovascularization process during the pathogenesis of herpetic stromal keratitis. J Virol 75:9828–9835. https://doi.org/10.1128/JVI.75.20.9828-9835.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zheng M, Schwarz MA, Lee S, Kumaraguru U, Rouse BT (2001) Control of stromal keratitis by inhibition of neovascularization. Am J Pathol 159:1021–1029

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Shukla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koujah, L., Suryawanshi, R.K. & Shukla, D. Pathological processes activated by herpes simplex virus-1 (HSV-1) infection in the cornea. Cell. Mol. Life Sci. 76, 405–419 (2019). https://doi.org/10.1007/s00018-018-2938-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2938-1

keywords

Navigation