Skip to main content
Log in

Comparative properties and functions of type 2 and type 4 pigeon cryptochromes

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Two types of vertebrate cryptochromes (Crys) are currently recognized. Type 2 Crys function in the molecular circadian clock as light-independent transcriptional repressors. Type 4 Crys are a newly discovered group with unknown function, although they are flavoproteins, and therefore, may function as photoreceptors. It has been postulated that Crys function in light-dependent magnetoreception, which is thought to contribute towards homing and migratory behaviors. Here we have cloned and annotated the full-length pigeon ClCry1, ClCry2, and ClCry4 genes, and characterized the full-length proteins and several site-directed mutants to investigate the roles of these proteins. ClCry1 and ClCry2 are phylogenetically grouped as Type 2 Crys and thus are expected to be core components of the pigeon circadian clock. Interestingly, we find that ClCry4 is properly annotated as a Type 4 Cry. It appears that many birds possess a Type 4 Cry which, as in pigeon, is misannotated. Like the Type 2 Crys, ClCry4 is widespread in pigeon tissues. However, unlike the Type 2 Crys, ClCry4 is cytosolic, and purified ClCry4 possesses FAD cofactor, which confers characteristic UV–Vis spectra as well as two photochemical activities. We find that ClCry4 undergoes light-dependent conformational change, which is a property of insect Type 1 Crys involved in the insect-specific pathway of photoentrainment of the biological clock. ClCry4 can also be photochemically reduced by a mechanism common to all FAD-containing Cry family members, and this mechanism is postulated to be influenced by the geomagnetic field. Thus pigeon Crys control circadian behavior and may also have photosensory function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sancar A (2003) Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chem Rev 103(6):2203–2237

    Article  CAS  Google Scholar 

  2. Wang J, Du X, Pan W, Wang X, Wu W (2015) Photoactivation of the cryptochrome/photolyase superfamily. J Photochem Photobiol C-Photochem Rev 22:84–102

    Article  CAS  Google Scholar 

  3. Cashmore AR (2003) Cryptochromes: enabling plants and animals to determine circadian time. Cell 114(5):537–543. https://doi.org/10.1016/j.cell.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  4. Hore PJ, Mouritsen H (2016) The radical-pair mechanism of magnetoreception. Annu Rev Biophys 45(1):299–344

    Article  CAS  Google Scholar 

  5. Sancar A (2016) Mechanisms of DNA repair by photolyase and excision nuclease (nobel lecture). Angew Chem Int Ed 55(30):8502–8527

    Article  CAS  Google Scholar 

  6. Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen L-O, van der Horst GT, Batschauer A, Ahmad M (2011) The cryptochromes: blue light photoreceptors in plants and animals. Annu Rev Plant Biol 62:335–364

    Article  CAS  Google Scholar 

  7. Lin C, Todo T (2005) The cryptochromes. Genome Biol 6:220

    Article  Google Scholar 

  8. Kutta RJ, Archipowa N, Johannissen LO, Jones AR, Scrutton NS (2017) Vertebrate cryptochromes are vestigial flavoproteins. Sci Rep 7:44906

    Article  CAS  Google Scholar 

  9. Yuan Q, Metterville D, Briscoe AD, Reppert SM (2007) Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol 24(4):948–955

    Article  CAS  Google Scholar 

  10. van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de Wit J, Verkerk A, Eker AP, van Leenen D, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630

    Article  CAS  Google Scholar 

  11. Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM (1999) mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205

    Article  CAS  Google Scholar 

  12. Zhu H, Yuan Q, Froy O, Casselman A, Reppert SM (2005) The two CRYs of the butterfly. Curr Biol 15:R953–R954

    Article  CAS  Google Scholar 

  13. Song SH, Ozturk N, Denaro TR, Arat NO, Kao YT, Zhu H, Zhong D, Reppert SM, Sancar A (2007) Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly. J Biol Chem 282(24):17608–17612

    Article  CAS  Google Scholar 

  14. Öztürk N, Song S-H, Selby CP, Sancar A (2008) Animal type 1 cryptochromes: analysis of the redox state of the flavin cofactor by site-directed mutagenesis. J Biol Chem 283:3256–3263

    Article  Google Scholar 

  15. Koh K, Zheng X, Sehgal A (2006) JETLAG resets the Drosophila circadian clock by promoting light-induced Degradation of TIMELESS. Science 312:1809–1812

    Article  CAS  Google Scholar 

  16. Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, Kay SA (1999) Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–556

    Article  CAS  Google Scholar 

  17. Rutila JE, Suri V, Le M, So WV, Rosbash M, Hall JC (1998) CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93(5):805–814

    Article  CAS  Google Scholar 

  18. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA (1998) Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280(5369):1599–1603

    Article  CAS  Google Scholar 

  19. Öztürk N, Selby CP, Song S-H, Ye R, Tan C, Kao Y-T, Zhong D, Sancar A (2009) Comparative photochemistry of animal type 1 and type 4 cryptochromes. Biochemistry 48:8585–8593

    Article  Google Scholar 

  20. Mitsui H, Maeda T, Yamaguchi C, Tsuji Y, Watari R, Kubo Y, Okano K, Okano T (2015) Overexpression in yeast, photocycle, and in vitro structural change of an avian putative magnetoreceptor cryptochrome4. Biochemistry 54(10):1908–1917

    Article  CAS  Google Scholar 

  21. Günther A, Einwich A, Sjulstok E, Feederle R, Bolte P, Koch K-W, Solov’yov IA, Mouritsen H (2018) Double-cone localization and seasonal expression pattern suggest a role in magnetoreception for European robin cryptochrome 4. Curr Biol 28(2):211.e214–223

    Article  Google Scholar 

  22. Ishikawa T, Hirayama J, Kobayashi Y, Todo T (2002) Zebrafish CRY represses transcription mediated by CLOCK-BMAL heterodimer without inhibiting its binding to DNA. Genes Cells 7(10):1073–1086

    Article  CAS  Google Scholar 

  23. Takeuchi T, Kubo Y, Okano K, Okano T (2014) Identification and characterization of cryptochrome4 in the ovary of western clawed frog Xenopus tropicalis. Zool Sci 31(3):152–159

    Article  CAS  Google Scholar 

  24. Kubo Y, Takeuchi T, Okano K, Okano T (2010) Cryptochrome genes are highly expressed in the ovary of the African clawed frog Xenopus tropicalis. PLoS One 5(2):e9273

    Article  Google Scholar 

  25. Kubo Y, Akiyama M, Fukada Y, Okano T (2006) Molecular cloning, mRNA expression, and immunocytochemical localization of a putative blue-light photoreceptor CRY4 in the chicken pineal gland. J Neurochem 97(4):1155–1165

    Article  CAS  Google Scholar 

  26. Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T (2000) Molecular analysis of zebrafish photolyase/cryptochrome family: two types of cryptochromes present in zebrafish. Genes Cells 5(9):725–738

    Article  CAS  Google Scholar 

  27. Ozturk N, Selby CP, Annayev Y, Zhong D, Sancar A (2011) Reaction mechanism of Drosophila cryptochrome. Proc Natl Acad Sci USA 108:516–521

    Article  CAS  Google Scholar 

  28. Park H-W, Kim S-T, Sancar A, Deisenhofer J (1995) Crystal structure of DNA photolyase from Escherichia coli. Science 268:1866–1872

    Article  CAS  Google Scholar 

  29. Zoltowski BD, Vaidya AT, Top D, Widom J, Young MW, Crane BR (2011) Structure of full-length Drosophila cryptochrome. Nature 480:396–399

    Article  CAS  Google Scholar 

  30. Schulten K, Swenberg CE, Weller A (1978) A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Zeitschrift fur Physkalische Chemie Neue Folge 111:1–5

    Article  Google Scholar 

  31. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78:707–718

    Article  CAS  Google Scholar 

  32. Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M, Schleicher E, Weber S, Timmel CR, Hore PJ (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci USA 109:4774–4779

    Article  CAS  Google Scholar 

  33. Wiltschko W, Wiltschko R (2007) Magnetoreception in birds: two receptors for two different tasks. J Ornithol 148(Suppl 1):S61–S76

    Article  Google Scholar 

  34. Mouritsen H (2018) Long-distance navigation and magnetoreception in migratory animals. Nature 558(7708):50–59

    Article  CAS  Google Scholar 

  35. Bailey MJ, Chong NW, Xiong J, Cassone VM (2002) Chickens’ Cry2: molecular analysis of an avian cryptochrome in retinal and pineal photoreceptors. FEBS Lett 513(2–3):169–174

    Article  CAS  Google Scholar 

  36. Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 7(Suppl 2):S163–S177

    Article  Google Scholar 

  37. Keeton WT (1971) Magnets interfere with pigeon homing. Proc Natl Acad Sci USA 68(1):102–106

    Article  CAS  Google Scholar 

  38. Wiltschko R, Nohr D, Wiltschko W (1981) Pigeons with a deficient sun compass use the magnetic compass. Science (New York, NY) 214(4518):343–345

    Article  CAS  Google Scholar 

  39. Dennis TE, Rayner MJ, Walker MM (2007) Evidence that pigeons orient to geomagnetic intensity during homing. Proc R Soc B Biol Sci 274(1614):1153–1158

    Article  Google Scholar 

  40. Liedvogel M, Mouritsen H (2010) Cryptochromes—a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 7:S147–S162

    Article  CAS  Google Scholar 

  41. Emery P, So WV, Kaneko M, Hall JC, Rosbash M (1998) CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95(5):669–679

    Article  CAS  Google Scholar 

  42. Gegear RJ, Casselman A, Waddell S, Reppert SM (2008) Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454(21):1014–1019

    Article  CAS  Google Scholar 

  43. Yamamoto K, Okano T, Fukada Y (2001) Chicken pineal Cry genes: light-dependent up-regulation of cCry1 and cCry2 transcripts. Neurosci Lett 313(1–2):13–16

    Article  CAS  Google Scholar 

  44. Fu Z, Inaba M, Noguchi T, Kato H (2002) Molecular cloning and circadian regulation of cryptochrome genes in Japanese quail (Coturnix coturnix japonica). J Biol Rhythms 17(1):14–27

    Article  CAS  Google Scholar 

  45. Pinzon-Rodriguez A, Bensch S, Muheim R (2018) Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J R Soc Interface. https://doi.org/10.1098/rsif.2018.0058.

    Article  Google Scholar 

  46. Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M, Hoeijmakers JH, van der Horst GT (1999) Photic induction of mPer1 and mPer2 in Cry-deficient mice lacking a biological clock. Science 286(5449):2531–2534

    Article  CAS  Google Scholar 

  47. Iuvone PM, Tosini G, Pozdeyev N, Haque R, Klein DC, Chaurasia SS (2005) Circadian clocks, clock networks, arylalkylamine N-acetyltransferase, and melatonin in the retina. Prog Retin Eye Res 24(4):433–456

    Article  CAS  Google Scholar 

  48. Zhu H, Conte F, Green CB (2003) Nuclear localization and transcriptional repression are confined to separable domains in the circadian protein CRYPTOCHROME. Curr Biol 13(18):1653–1658

    Article  CAS  Google Scholar 

  49. Liu B, Liu H, Zhong D, Lin C (2010) Searching for a photocycle of the cryptochrome photoreceptors. Curr Opin Plant Biol 13:578–586

    Article  CAS  Google Scholar 

  50. Macheroux P (1999) UV-visible spectroscopy as a tool to study flavoproteins. Methods Mol Biol (Clifton, NJ) 131:1–7

    CAS  Google Scholar 

  51. Partch CL, Clarkson MW, Ozgur S, Lee AL, Sancar A (2005) Role of structural plasticity in signal transduction by the cryptochrome blue-light photoreceptor. Biochemistry 44(10):3795–3805

    Article  CAS  Google Scholar 

  52. Griffin EA, Staknis D, Weitz CJ (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286:768–771

    Article  CAS  Google Scholar 

  53. Ye R, Selby CP, Chiou YY, Ozkan-Dagliyan I, Gaddameedhi S, Sancar A (2014) Dual modes of CLOCK:BMAL1 inhibition mediated by Cryptochrome and period proteins in the mammalian circadian clock. Genes Dev 28(18):1989–1998

    Article  CAS  Google Scholar 

  54. Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119

    Article  CAS  Google Scholar 

  55. Mouritsen H, Janssen-Bienhold U, Liedvogel M, Feenders G, Stalleicken J, Dirks P, Weiler R (2004) Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc Natl Acad Sci USA 101(39):14294–14299

    Article  CAS  Google Scholar 

  56. Watari R, Yamaguchi C, Zemba W, Kubo Y, Okano K, Okano T (2012) Light-dependent structural change of chicken retinal Cryptochrome4. J Biol Chem 287(51):42634–42641

    Article  CAS  Google Scholar 

  57. Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E (2007) A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem 282(17):13011–13021

    Article  CAS  Google Scholar 

  58. Kao YT, Tan C, Song SH, Ozturk N, Li J, Wang L, Sancar A, Zhong D (2008) Ultrafast dynamics and anionic active states of the flavin cofactor in cryptochrome and photolyase. J Am Chem Soc 130(24):7695–7701

    Article  CAS  Google Scholar 

  59. Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269(5226):968–970

    Article  CAS  Google Scholar 

  60. Ozturk N, Selby CP, Zhong D, Sancar A (2014) Mechanism of photosignaling by Drosophila cryptochrome: role of the redox status of the flavin chromophore. J Biol Chem 289(8):4634–4642

    Article  CAS  Google Scholar 

  61. Provencio I, Warthen DM (2012) Melanopsin, the photopigment of intrinsically photosensitive retinal ganglion cells. Wiley Interdiscip Rev Membr Transp Signal 1(2):228–237

    Article  CAS  Google Scholar 

  62. Busza A, Emery-Le M, Rosbash M, Emery P (2004) Roles of the two Drosophila CRYPTOCHROME structural domains in circadian photoreception. Science 304(5676):1503–1506

    Article  CAS  Google Scholar 

  63. Rosato E, Codd V, Mazzotta G, Piccin A, Zordan M, Costa R, Kyriacou CP (2001) Light-dependent interaction between Drosophila CRY and the clock protein PER mediated by the carboxy terminus of CRY. Curr Biol 11:909–917

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant no. 21403298) and the China Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 20134307120015) to Jing Wang. This work was also supported by NIH Grants GM118102 and ES027255 to Aziz Sancar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aziz Sancar or Jing Wang.

Ethics declarations

Ethical approval

All applicable guidelines for the care and use of animals in China and the National University of Defense Technology Ethics Committee were followed.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 914 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jing, C., Selby, C.P. et al. Comparative properties and functions of type 2 and type 4 pigeon cryptochromes. Cell. Mol. Life Sci. 75, 4629–4641 (2018). https://doi.org/10.1007/s00018-018-2920-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2920-y

Keywords

Navigation