Skip to main content

Advertisement

Log in

Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Author Correction to this article was published on 22 March 2018

This article has been updated

Abstract

Secondary damage following spinal cord injury leads to non-reversible lesions and hampering of the reparative process. The local production of pro-inflammatory cytokines such as TNF-α can exacerbate these events. Oligodendrocyte death also occurs, followed by progressive demyelination leading to significant tissue degeneration. Dental stem cells from human apical papilla (SCAP) can be easily obtained at the removal of an adult immature tooth. This offers a minimally invasive approach to re-use this tissue as a source of stem cells, as compared to biopsying neural tissue from a patient with a spinal cord injury. We assessed the potential of SCAP to exert neuroprotective effects by investigating two possible modes of action: modulation of neuro-inflammation and oligodendrocyte progenitor cell (OPC) differentiation. SCAP were co-cultured with LPS-activated microglia, LPS-activated rat spinal cord organotypic sections (SCOS), and LPS-activated co-cultures of SCOS and spinal cord adult OPC. We showed for the first time that SCAP can induce a reduction of TNF-α expression and secretion in inflamed spinal cord tissues and can stimulate OPC differentiation via activin-A secretion. This work underlines the potential therapeutic benefits of SCAP for spinal cord injury repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 22 March 2018

    In the original publication, sixth author’s surname was incorrectly published as “Llyod” instead of “Lloyd”. The correct name should read as “Amy Lloyd”.

References

  1. Bianco J, De Berdt P, Deumens R, des Rieux A (2016) Taking a bite out of spinal cord injury: do dental stem cells have the teeth for it? Cell Mol Life Sci 73(7):1413–1437. https://doi.org/10.1007/s00018-015-2126-5

    Article  PubMed  CAS  Google Scholar 

  2. Hall ED, Springer JE (2004) Neuroprotection and acute spinal cord injury: a reappraisal. NeuroRx 1(1):80–100. https://doi.org/10.1602/neurorx.1.1.80

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O (2003) Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 100(23):13632–13637. https://doi.org/10.1073/pnas.2234031100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209(2):294–301. https://doi.org/10.1016/j.expneurol.2007.05.014

    Article  PubMed  CAS  Google Scholar 

  5. Kyritsis N, Kizil C, Brand M (2014) Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol 24(2):128–135. https://doi.org/10.1016/j.tcb.2013.08.004

    Article  PubMed  CAS  Google Scholar 

  6. Held KS, Lane TE (2014) Spinal cord injury, immunodepression, and antigenic challenge. Semin Immunol 26(5):415–420. https://doi.org/10.1016/j.smim.2014.03.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Xue H, Zhang XY, Liu JM, Song Y, Liu TT, Chen D (2013) NDGA reduces secondary damage after spinal cord injury in rats via anti-inflammatory effects. Brain Res 1516:83–92. https://doi.org/10.1016/j.brainres.2013.04.016

    Article  PubMed  CAS  Google Scholar 

  8. Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, Yoshida A, Long G, Wright KT, Johnson WE, Baba H (2012) Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. J Neurotrauma 29(8):1614–1625. https://doi.org/10.1089/neu.2011.2109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beattie MS (2004) Inflammation and apoptosis: linked therapeutic targets in spinal cord injury. Trends Mol Med 10(12):580–583. https://doi.org/10.1016/j.molmed.2004.10.006

    Article  PubMed  CAS  Google Scholar 

  10. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2015) Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 8:35. https://doi.org/10.3389/fnmol.2015.00035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Badner A, Siddiqui AM, Fehlings MG (2017) Spinal cord injuries: how could cell therapy help? Expert Opin Biol Ther. https://doi.org/10.1080/14712598.2017.1308481

    Article  PubMed  Google Scholar 

  12. Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54. https://doi.org/10.1038/emm.2013.94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Martinez AM, Goulart CO, Ramalho Bdos S, Oliveira JT, Almeida FM (2014) Neurotrauma and mesenchymal stem cells treatment: from experimental studies to clinical trials. World J Stem Cells 6(2):179–194. https://doi.org/10.4252/wjsc.v6.i2.179

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hsuan YC, Lin CH, Chang CP, Lin MT (2016) Mesenchymal stem cell-based treatments for stroke, neural trauma, and heat stroke. Brain Behav 6(10):e00526. https://doi.org/10.1002/brb3.526

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chio CC, Lin MT, Chang CP (2015) Microglial activation as a compelling target for treating acute traumatic brain injury. Curr Med Chem 22(6):759–770

    Article  PubMed  CAS  Google Scholar 

  16. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, De Rosa A, Laino L, d’Aquino R, Tirino V, Papaccio G (2013) Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med 2(4):316–324. https://doi.org/10.5966/sctm.2012-0136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Huang GT, Gronthos S, Shi S (2009) Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 88(9):792–806. https://doi.org/10.1177/0022034509340867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Karaoz E, Demircan PC, Saglam O, Aksoy A, Kaymaz F, Duruksu G (2011) Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem Cell Biol 136(4):455–473. https://doi.org/10.1007/s00418-011-0858-3

    Article  PubMed  CAS  Google Scholar 

  19. Pomerat CM, Contino RM (1965) The cultivation of dental tissues. Oral Surg Oral Med Oral Pathol 19:628–632

    Article  PubMed  CAS  Google Scholar 

  20. Yang C, Li X, Sun L, Guo W, Tian W (2017) Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 14(2):026005. https://doi.org/10.1088/1741-2552/aa596b

    Article  PubMed  Google Scholar 

  21. De Berdt P, Vanacker J, Ucakar B, Elens L, Diogenes A, Leprince JG, Deumens R, des Rieux A (2015) Dental apical papilla as therapy for spinal cord injury. J Dent Res 94(11):1575–1581. https://doi.org/10.1177/0022034515604612

    Article  PubMed  Google Scholar 

  22. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJ, ffrench-Constant C (2013) M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 16(9):1211–1218. https://doi.org/10.1038/nn.3469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jeong J, Ahn M, Sim KB, Moon C, Shin T (2014) Immunohistochemical analysis of activin A expression in spinal cords of rats with clip compression injuries. Acta Histochem 116(5):747–752. https://doi.org/10.1016/j.acthis.2014.01.002

    Article  PubMed  CAS  Google Scholar 

  24. Ruparel NB, de Almeida JF, Henry MA, Diogenes A (2013) Characterization of a stem cell of apical papilla cell line: effect of passage on cellular phenotype. J Endod 39(3):357–363. https://doi.org/10.1016/j.joen.2012.10.027

    Article  PubMed  Google Scholar 

  25. Vanacker J, Viswanath A, De Berdt P, Everard A, Cani PD, Bouzin C, Feron O, Diogenes A, Leprince JG, des Rieux A (2014) Hypoxia modulates the differentiation potential of stem cells of the apical papilla. J Endod 40(9):1410–1418. https://doi.org/10.1016/j.joen.2014.04.008

    Article  PubMed  Google Scholar 

  26. Bianco J, Carradori D, Deumens R, des Rieux A (2017) Rapid serum-free isolation of oligodendrocyte progenitor cells from adult rat spinal cord. Stem Cell Rev 13(4):499–512. https://doi.org/10.1007/s12015-017-9742-4

    Article  PubMed  CAS  Google Scholar 

  27. Gerardo-Nava J, Hodde D, Katona I, Bozkurt A, Grehl T, Steinbusch HW, Weis J, Brook GA (2014) Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials 35(14):4288–4296. https://doi.org/10.1016/j.biomaterials.2014.02.007

    Article  PubMed  CAS  Google Scholar 

  28. Refaat B (2014) Role of activins in embryo implantation and diagnosis of ectopic pregnancy: a review. Reprod Biol Endocrinol 12:116. https://doi.org/10.1186/1477-7827-12-116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Alhouayek M, Masquelier J, Cani PD, Lambert DM, Muccioli GG (2013) Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6. Proc Natl Acad Sci USA 110(43):17558–17563. https://doi.org/10.1073/pnas.1314017110

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rouanet C, Reges D, Rocha E, Gagliardi V, Silva GS (2017) Traumatic spinal cord injury: current concepts and treatment update. Arq Neuropsiquiatr 75(6):387–393. https://doi.org/10.1590/0004-282X20170048

    Article  PubMed  Google Scholar 

  31. Gerardo-Nava J, Mayorenko II, Grehl T, Steinbusch HW, Weis J, Brook GA (2013) Differential pattern of neuroprotection in lumbar, cervical and thoracic spinal cord segments in an organotypic rat model of glutamate-induced excitotoxicity. J Chem Neuroanat 53:11–17. https://doi.org/10.1016/j.jchemneu.2013.09.007

    Article  PubMed  CAS  Google Scholar 

  32. Daviaud N, Garbayo E, Schiller PC, Perez-Pinzon M, Montero-Menei CN (2013) Organotypic cultures as tools for optimizing central nervous system cell therapies. Exp Neurol 248:429–440. https://doi.org/10.1016/j.expneurol.2013.07.012

    Article  PubMed  Google Scholar 

  33. Cao Q, Xu XM, Devries WH, Enzmann GU, Ping P, Tsoulfas P, Wood PM, Bunge MB, Whittemore SR (2005) Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. J Neurosci 25(30):6947–6957. https://doi.org/10.1523/JNEUROSCI.1065-05.2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C, Wiesenfeld-Hallin Z, Kurpad SN, Frisen J, Olson L (2005) Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 8(3):346–353. https://doi.org/10.1038/nn1405

    Article  PubMed  CAS  Google Scholar 

  35. Plemel JR, Keough MB, Duncan GJ, Sparling JS, Yong VW, Stys PK, Tetzlaff W (2014) Remyelination after spinal cord injury: is it a target for repair? Prog Neurobiol 117:54–72. https://doi.org/10.1016/j.pneurobio.2014.02.006

    Article  PubMed  CAS  Google Scholar 

  36. Jeong YH, Park JS, Kim DH, Kang JL, Kim HS (2017) Anti-inflammatory mechanism of lonchocarpine in LPS- or poly(I:C)-induced neuroinflammation. Pharmacol Res 119:431–442. https://doi.org/10.1016/j.phrs.2017.02.027

    Article  PubMed  CAS  Google Scholar 

  37. Jose S, Tan SW, Ooi YY, Ramasamy R, Vidyadaran S (2014) Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-alpha levels. J Neuroinflammation 11:149. https://doi.org/10.1186/s12974-014-0149-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Demircan PC, Sariboyaci AE, Unal ZS, Gacar G, Subasi C, Karaoz E (2011) Immunoregulatory effects of human dental pulp-derived stem cells on T cells: comparison of transwell co-culture and mixed lymphocyte reaction systems. Cytotherapy 13(10):1205–1220. https://doi.org/10.3109/14653249.2011.605351

    Article  PubMed  CAS  Google Scholar 

  39. Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44(2):551–554. https://doi.org/10.1161/STROKEAHA.112.676759

    Article  PubMed  Google Scholar 

  40. Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S (2014) Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 6(5):552–570. https://doi.org/10.4252/wjsc.v6.i5.552

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zachar L, Bacenkova D, Rosocha J (2016) Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. J Inflamm Res 9:231–240. https://doi.org/10.2147/JIR.S121994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Dostert G, Mesure B, Menu P, Velot E (2017) How do mesenchymal stem cells influence or are influenced by microenvironment through extracellular vesicles communication? Front Cell Dev Biol 5:6. https://doi.org/10.3389/fcell.2017.00006

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lee YB, Yune TY, Baik SY, Shin YH, Du S, Rhim H, Lee EB, Kim YC, Shin ML, Markelonis GJ, Oh TH (2000) Role of tumor necrosis factor-alpha in neuronal and glial apoptosis after spinal cord injury. Exp Neurol 166(1):190–195. https://doi.org/10.1006/exnr.2000.7494

    Article  PubMed  CAS  Google Scholar 

  44. Amini Pishva A, Akbari M, Farahabadi A, Arabkheradmand A, Beyer C, Dashti N, Moradi F, Hassanzadeh G (2016) Effect of estrogen therapy on TNF-alpha and iNOS gene expression in spinal cord injury model. Acta Med Iran 54(5):296–301

    PubMed  Google Scholar 

  45. Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X (2014) Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflammation 11:135. https://doi.org/10.1186/1742-2094-11-135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Matsubara K, Matsushita Y, Sakai K, Kano F, Kondo M, Noda M, Hashimoto N, Imagama S, Ishiguro N, Suzumura A, Ueda M, Furukawa K, Yamamoto A (2015) Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci 35(6):2452–2464. https://doi.org/10.1523/JNEUROSCI.4088-14.2015

    Article  PubMed  Google Scholar 

  47. Jiang CM, Liu J, Zhao JY, Xiao L, An S, Gou YC, Quan HX, Cheng Q, Zhang YL, He W, Wang YT, Yu WJ, Huang YF, Yi YT, Chen Y, Wang J (2015) Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J Dent Res 94(1):69–77. https://doi.org/10.1177/0022034514557671

    Article  PubMed  CAS  Google Scholar 

  48. Page P, DeJong J, Bandstra A, Boomsma RA (2014) Effect of serum and oxygen concentration on gene expression and secretion of paracrine factors by mesenchymal stem cells. Int J Cell Biol 2014:601063. https://doi.org/10.1155/2014/601063

    Article  PubMed  PubMed Central  Google Scholar 

  49. Paquet J, Deschepper M, Moya A, Logeart-Avramoglou D, Boisson-Vidal C, Petite H (2015) oxygen tension regulates human mesenchymal stem cell paracrine functions. Stem Cells Transl Med 4(7):809–821. https://doi.org/10.5966/sctm.2014-0180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Martens W, Sanen K, Georgiou M, Struys T, Bronckaers A, Ameloot M, Phillips J, Lambrichts I (2014) Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro. FASEB J 28(4):1634–1643. https://doi.org/10.1096/fj.13-243980

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sakai K, Yamamoto A, Matsubara K, Nakamura S, Naruse M, Yamagata M, Sakamoto K, Tauchi R, Wakao N, Imagama S, Hibi H, Kadomatsu K, Ishiguro N, Ueda M (2012) Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Investig 122(1):80–90. https://doi.org/10.1172/JCI59251

    Article  PubMed  CAS  Google Scholar 

  52. El-Akabawy G, Rashed LA (2015) Beneficial effects of bone marrow-derived mesenchymal stem cell transplantation in a non-immune model of demyelination. Ann Anat 198:11–20. https://doi.org/10.1016/j.aanat.2014.12.002

    Article  PubMed  Google Scholar 

  53. Djouad F, Jackson WM, Bobick BE, Janjanin S, Song Y, Huang GT, Tuan RS (2010) Activin A expression regulates multipotency of mesenchymal progenitor cells. Stem Cell Res Ther 1(2):11. https://doi.org/10.1186/scrt11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Abe M, Shintani Y, Eto Y, Harada K, Kosaka M, Matsumoto T (2002) Potent induction of activin A secretion from monocytes and bone marrow stromal fibroblasts by cognate interaction with activated T cells. J Leukoc Biol 72(2):347–352

    PubMed  CAS  Google Scholar 

  55. Chatterjee D, Marquardt N, Tufa DM, Hatlapatka T, Hass R, Kasper C, von Kaisenberg C, Schmidt RE, Jacobs R (2014) Human umbilical cord-derived mesenchymal stem cells utilize activin-A to suppress interferon-gamma production by natural killer cells. Front Immunol 5:662. https://doi.org/10.3389/fimmu.2014.00662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Fodor J, Gomba-Toth A, Olah T, Almassy J, Zador E, Csernoch L (2017) Follistatin treatment suppresses SERCA1b levels independently of other players of calcium homeostasis in C2C12 myotubes. J Muscle Res Cell Motil. https://doi.org/10.1007/s10974-017-9474-8

    Article  PubMed  Google Scholar 

  57. Boulanger JJ, Messier C (2014) From precursors to myelinating oligodendrocytes: contribution of intrinsic and extrinsic factors to white matter plasticity in the adult brain. Neuroscience 269:343–366. https://doi.org/10.1016/j.neuroscience.2014.03.063

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Anne des Rieux is a Research Associate, Mireille Alhouayek is a Post-doctoral Researcher and Pauline Bottemanne is a FRIA Doctoral Researcher at the FRS-FNRS (Fonds de la Recherche Scientifique). The authors acknowledge Prof. O. Feron (UCL) for the access to hypoxia incubator and Daniel Soong (EdU) for his help with MBP quantification as well as Loïc Germain (UCL) for his support in the development of the tri-cultures. We are also grateful to Université Catholique de Louvain (FSR) and International Foundation for Research in Paraplegia (IRP) for the financial support. The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne des Rieux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Results obtained for LPS-treated samples are presented in this manuscript, while results for non-LPS-treated samples are in supplementary data.

Supplementary material 1 (TIFF 960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Berdt, P., Bottemanne, P., Bianco, J. et al. Stem cells from human apical papilla decrease neuro-inflammation and stimulate oligodendrocyte progenitor differentiation via activin-A secretion. Cell. Mol. Life Sci. 75, 2843–2856 (2018). https://doi.org/10.1007/s00018-018-2764-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2764-5

Keywords

Navigation