Skip to main content

Advertisement

Log in

Developing anti-neoplastic biotherapeutics against eIF4F

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Biotherapeutics have revolutionized modern medicine by providing medicines that would not have been possible with small molecules. With respect to cancer therapies, this represents the current sector of the pharmaceutical industry having the largest therapeutic impact, as exemplified by the development of recombinant antibodies and cell-based therapies. In cancer, one of the most common regulatory alterations is the perturbation of translational control. Among these, changes in eukaryotic initiation factor 4F (eIF4F) are associated with tumor initiation, progression, and drug resistance in a number of settings. This, coupled with the fact that systemic suppression of eIF4F appears well tolerated, indicates that therapeutic agents targeting eIF4F hold much therapeutic potential. Here, we discuss opportunities offered by biologicals for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

eIF:

Eukaryotic initiation factor

TC:

Ternary complex

UTR:

Untranslated region

IRES:

Internal ribosome entry site

HRV:

Human rhinovirus

GBM:

Gliobastoma multiforme

References

  1. Hurst S (2011) Biotherapeutics Drug Development

  2. Ltd E (2014) EvaluatePharma world preview 2014. In: Hills P (ed) Outlook to 2020

  3. Pelletier J, Graff J, Ruggero D, Sonenberg N (2015) Targeting the eIF4F translation initiation complex: a critical nexus for cancer development. Cancer Res 75:250–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhat M, Robichaud N, Hulea L, Sonenberg N, Pelletier J, Topisirovic I (2015) Targeting the translation machinery in cancer. Nat Rev Drug Discov. 14:261–278

    Article  CAS  PubMed  Google Scholar 

  5. Chu J, Cargnello M, Topisirovic I Pelletier J (2016) Translation initiation factors: reprogramming protein synthesis in cancer. Trends Cell Biol

  6. Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11

    Article  CAS  PubMed  Google Scholar 

  7. Sinvani H, Haimov O, Svitkin Y, Sonenberg N, Tamarkin-Ben-Harush A, Viollet B, Dikstein R (2015) Translational tolerance of mitochondrial genes to metabolic energy stress involves TISU and eIF1-eIF4GI cooperation in start codon selection. Cell Metab 21:479–492

    Article  CAS  PubMed  Google Scholar 

  8. Fernandez IS, Bai XC, Murshudov G, Scheres SH, Ramakrishnan V (2014) Initiation of translation by cricket paralysis virus IRES requires its translocation in the ribosome. Cell 157:823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352:1413–1416

    Article  CAS  PubMed  Google Scholar 

  10. Jackson RJ, Hellen CU, Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matthews MB, Sonenberg N, Hershey JWB (2007) Origins and principle of translation control. In: Matthews MB, Sonenberg N, Hershey JWB (eds) Translational control in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 1–40

  12. Johnson LF, Levis R, Abelson HT, Green H, Penman S (1976) Changes in RNA in relation to growth of the fibroblast. IV. Alterations in theproduction and processing of mRNA and rRNA in resting and growing cells. J Cell Biol 71:933–938

    Article  CAS  PubMed  Google Scholar 

  13. Colina R, Costa-Mattioli M, Dowling RJ, Jaramillo M, Tai LH, Breitbach CJ, Martineau Y, Larsson O, Rong L, Svitkin YV, Makrigiannis AP, Bell JC, Sonenberg N (2008) Translational control of the innate immune response through IRF-7. Nature 452:323–328

    Article  CAS  PubMed  Google Scholar 

  14. Larsson O, Li S, Issaenko OA, Avdulov S, Peterson M, Smith K, Bitterman PB, Polunovsky VA (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67:6814–6824

    Article  CAS  PubMed  Google Scholar 

  15. Larsson O, Perlman DM, Fan D, Reilly CS, Peterson M, Dahlgren C, Liang Z, Li S, Polunovsky VA, Wahlestedt C, Bitterman PB (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res 34:4375–4386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Polunovsky VA, Rosenwald IB, Tan AT, White J, Chiang L, Sonenberg N, Bitterman PB (1996) Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 16:6573–6581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS (1996) Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65:785–790

    Article  CAS  PubMed  Google Scholar 

  18. Walsh D, Mathews MB, Mohr I (2013) Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol 5:a012351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Topisirovic I, Sonenberg N (2011) mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 pathways. Cold Spring Harbor symposia on quantitative biology

  20. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  22. Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harbor Perspect Biol 4

  23. Pestova TV, Kolupaeva VG (2002) The roles of individual eukaryotic translation initiation factors in ribosomal scanning and initiation codon selection. Genes Dev 16:2906–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sonenberg N (1981) ATP/Mg++-dependent cross-linking of cap binding proteins to the 5′ end of eukaryotic mRNA. Nucleic Acids Res 9:1643–1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nielsen PJ, Trachsel H (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J 7:2097–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Galicia-Vazquez G, Cencic R, Robert F, Agenor AQ, Pelletier J (2012) A cellular response linking eIF4AI activity to eIF4AII transcription. RNA 18:1373–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yoder-Hill J, Pause A, Sonenberg N, Merrick WC (1993) The p46 subunit of eukaryotic initiation factor (eIF)-4F exchanges with eIF-4A. J Biol Chem 268:5566–5573

    CAS  PubMed  Google Scholar 

  28. Galicia-Vazquez G, Chu J, Pelletier J (2015) eIF4AII is dispensable for miRNA-mediated gene silencing. RNA 21:1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams-Hill DM, Duncan RF, Nielsen PJ Tahara SM (1997) Differential expression of the murine eukaryotic translation initiation factor isogenes eIF4A(I) and eIF4A(II) is dependent upon cellular growth status. Arch Biochem Biophys 338:111–120

  30. Lin CJ, Cencic R, Mills JR, Robert F, Pelletier J (2008) c-Myc and eIF4F are components of a feedforward loop that links transcription and translation. Cancer Res 68:5326–5334

    Article  CAS  PubMed  Google Scholar 

  31. Imataka H, Gradi A, Sonenberg N (1998) A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J 17:7480–7489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, Sonenberg N (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18:334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pyronnet S, Imataka H, Gingras AC, Fukunaga R, Hunter T, Sonenberg N (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J 18:270–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho JJ, Wang M, Audas TE, Kwon D, Carlsson SK, Timpano S, Evagelou SL, Brothers S, Gonzalgo ML, Krieger JR, Chen S, Uniacke J Lee S (2016) Systemic reprogramming of translation efficiencies on oxygen stimulus. Cell Rep 14:1293–1300

  35. Duncan R, Milburn SC, Hershey JW (1987) Regulated phosphorylation and low abundance of HeLa cell initiation factor eIF-4F suggest a role in translational control. Heat shock effects on eIF-4F. J Biol Chem 262:380–388

    CAS  PubMed  Google Scholar 

  36. Pelletier J, Sonenberg N (1985) Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 40:515–526

    Article  CAS  PubMed  Google Scholar 

  37. Pelletier J, Sonenberg N (1985) Photochemical cross-linking of cap binding proteins to eucaryotic mRNAs: effect of mRNA 5′ secondary structure. Mol Cell Biol 5:3222–3230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lawson TG, Ray BK, Dodds JT, Grifo JA, Abramson RD, Merrick WC, Betsch DF, Weith HL, Thach RE (1986) Influence of 5′ proximal secondary structure on the translational efficiency of eukaryotic mRNAs and on their interaction with initiation factors. J Biol Chem 261:13979–13989

    CAS  PubMed  Google Scholar 

  39. Babendure JR, Babendure JL, Ding JH Tsien RY (2006) Control of mammalian translation by mRNA structure near caps. RNA 12:851–861

  40. Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ Sonenberg N (2001) The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure. RNA 7:382–394

  41. Shah P, Ding Y, Niemczyk M, Kudla G, Plotkin JB (2013) Rate-limiting steps in yeast protein translation. Cell 153:1589–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goossen B, Caughman SW, Harford JB, Klausner RD, Hentze MW (1990) Translational repression by a complex between the iron-responsive element of ferritin mRNA and its specific cytoplasmic binding protein is position-dependent in vivo. EMBO J 9:4127–4133

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345:544–547

    Article  CAS  PubMed  Google Scholar 

  44. Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C Pandolfi PP (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med. 10:484–486

  45. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S, Cordon-Cardo C, Pelletier J, Lowe SW (2004) Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428:332–337

    Article  CAS  PubMed  Google Scholar 

  46. Sonenberg N, Hinnebusch AG (2007) New modes of translational control in development, behavior, and disease. Mol Cell 28:721–729

    Article  CAS  PubMed  Google Scholar 

  47. Boussemart L et al (2014) eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature 513:105–109

    Article  CAS  PubMed  Google Scholar 

  48. Wendel HG, Malina A, Zhao Z, Zender L, Kogan SC, Cordon-Cardo C, Pelletier J, Lowe SW (2006) Determinants of sensitivity and resistance to rapamycin-chemotherapy drug combinations in vivo. Cancer Res 66:7639–7646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ilic N, Utermark T, Widlund HR, Roberts TM (2011) PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc Natl Acad Sci USA 108:E699–E708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cope CL, Gilley R, Balmanno K, Sale MJ, Howarth KD, Hampson M, Smith PD, Guichard SM, Cook SJ (2014) Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J Cell Sci 127:788–800

    Article  CAS  PubMed  Google Scholar 

  51. Croft A, Tay KH, Boyd SC, Guo ST, Jiang CC, Lai F, Tseng HY, Jin L, Rizos H, Hersey P, Zhang XD (2014) Oncogenic activation of MEK/ERK primes melanoma cells for adaptation to endoplasmic reticulum stress. J Invest Dermatol 134:488–497

    Article  CAS  PubMed  Google Scholar 

  52. Gingras ACRB, Gygi SP, Niedzwiecka A, Miron M, Burley SK, Polakiewicz RD, Wyslouch-Cieszynska A, Aebersold R, Sonenberg N (2001) Hierarchical phosphorylation of the translation inhibitor 4E-BP1. Genes Dev 15:2852–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S, Lockett SJ, Sonenberg N, Colburn NH (2003) The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23:26–37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH (2004) A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 24:3894–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M (2006) S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314:467–471

    Article  CAS  PubMed  Google Scholar 

  56. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    Article  PubMed  CAS  Google Scholar 

  57. Flynn A, Proud CG (1995) Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J Biol Chem 270:21684–21688

    Article  CAS  PubMed  Google Scholar 

  58. Joshi B, Cai AL, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, Rhoads RE (1995) Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J Biol Chem 270:14597–14603

    Article  CAS  PubMed  Google Scholar 

  59. Waskiewicz AJ, Johnson JC, Penn B, Mahalingam M, Kimball SR, Cooper JA (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19:1871–1880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ueda T, Watanabe-Fukunaga R, Fukuyama H, Nagata S, Fukunaga R (2004) Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol Cell Biol 24:6539–6549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Furic L, Rong L, Larsson O, Koumakpayi IH, Yoshida K, Brueschke A, Petroulakis E, Robichaud N, Pollak M, Gaboury LA, Pandolfi PP, Saad F, Sonenberg N (2010) eIF4E phosphorylation promotes tumorigenesis and is associated with prostate cancer progression. Proc Natl Acad Sci USA 107:14134–14139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Topisirovic I, Ruiz-Gutierrez M, Borden KL (2004) Phosphorylation of the eukaryotic translation initiation factor eIF4E contributes to its transformation and mRNA transport activities. Cancer Res 64:8639–8642

    Article  CAS  PubMed  Google Scholar 

  63. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, Watanabe-Fukunaga R, Fukunaga R, Teruya-Feldstein J, Pelletier J, Lowe SW (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21:3232–3237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gingras AC, Raught B, Sonenberg N (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 68:913–963

    Article  CAS  PubMed  Google Scholar 

  65. Scheper GC, Proud CG (2002) Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur J Biochem 269:5350–5359

    Article  CAS  PubMed  Google Scholar 

  66. Lin CJ, Nasr Z, Premsrirut PK, Porco JA, Jr., Hippo Y, Lowe SW Pelletier J (2012) Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Reports 1:325–333

  67. Robert F, Roman W, Bramoulle A, Fellmann C, Roulston A, Shustik C, Porco JA Jr, Shore GC, Sebag M, Pelletier J (2014) Translation initiation factor eIF4F modifies the dexamethasone response in multiple myeloma. Proc Natl Acad Sci USA 111:13421–13426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Huttenrauch M, Kuspert M, Pfann C, Nixon C, Herold S, Walz S, Taranets L, Germer CT, Rosenwald A, Sansom OJ, Eilers M (2015) Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov 5:768–781

  69. Beroukhim R et al (2010) The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev Cancer 5:468–479

    Article  CAS  PubMed  Google Scholar 

  71. Rinker-Schaeffer CW, Graff JR, De Benedetti A, Zimmer SG, Rhoads RE (1993) Decreasing the level of translation initiation factor 4E with antisense RNA causes reversal of ras-mediated transformation and tumorigenesis of cloned rat embryo fibroblasts. Int J Cancer 55:841–847

    Article  CAS  PubMed  Google Scholar 

  72. Graff JR, Boghaert ER, De Benedetti A, Tudor DL, Zimmer CC, Chan SK, Zimmer SG (1995) Reduction of translation initiation factor 4E decreases the malignancy of ras-transformed cloned rat embryo fibroblasts. Int J Cancer 60:255–263

    Article  CAS  PubMed  Google Scholar 

  73. Thumma SC, Jacobson BA, Patel MR, Konicek BW, Franklin MJ, Jay-Dixon J, Sadiq A, De A, Graff JR, Kratzke RA (2015) Antisense oligonucleotide targeting eukaryotic translation initiation factor 4E reduces growth and enhances chemosensitivity of non-small-cell lung cancer cells. Cancer Gene Ther

  74. Altmann M, Handschin C, Trachsel H (1987) mRNA cap-binding protein: cloning of the gene encoding protein synthesis initiation factor eIF-4E from Saccharomyces cerevisiae. Mol Cell Biol 7:998–1003

  75. Truitt ML, Conn CS, Shi Z, Pang X, Tokuyasu T, Coady AM, Seo Y, Barna M, Ruggero D (2015) Differential requirements for eIF4E dose in normal development and cancer. Cell 162:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Graff JR et al (2007) Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J Clin Invest. 117:2638–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hong DS, Kurzrock R, Oh Y, Wheler J, Naing A, Brail L, Callies S, Andre V, Kadam SK, Nasir A, Holzer TR, Meric-Bernstam F, Fishman M, Simon G (2011) A phase 1 dose escalation, pharmacokinetic, and pharmacodynamic evaluation of eIF-4E antisense oligonucleotide LY2275796 in patients with advanced cancer. Clin Cancer Res 17:6582–6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Duffy AG et al (2016) Modulation of tumor eIF4E by antisense inhibition: a phase I/II translational clinical trial of ISIS 183750-an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer. Int J Cancer 139:1648–1657

    Article  CAS  PubMed  Google Scholar 

  79. Mochizuki K, Oguro A, Ohtsu T, Sonenberg N, Nakamura Y (2005) High affinity RNA for mammalian initiation factor 4E interferes with mRNA-cap binding and inhibits translation. RNA 11:77–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oguro A, Ohtsu T, Svitkin YV, Sonenberg N, Nakamura Y (2003) RNA aptamers to initiation factor 4A helicase hinder cap-dependent translation by blocking ATP hydrolysis. RNA 9:394–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miyakawa S, Oguro A, Ohtsu T, Imataka H, Sonenberg N, Nakamura Y (2006) RNA aptamers to mammalian initiation factor 4G inhibit cap-dependent translation by blocking the formation of initiation factor complexes. RNA 12:1825–1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Guo WM, Kong KW, Brown CJ, Quah ST, Yeo HL, Hoon S, Seow Y (2014) Identification and characterization of an eIF4e DNA aptamer that inhibits proliferation with high throughput sequencing. Mol Ther Nucleic Acids 3:e217

  83. Tiedge H, Fremeau RT Jr, Weinstock PH, Arancio O, Brosius J (1991) Dendritic location of neural BC1 RNA. Proc Natl Acad Sci USA 88:2093–2097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Eom HJ, Chatterjee N, Lee J, Choi J (2014) Integrated mRNA and micro RNA profiling reveals epigenetic mechanism of differential sensitivity of Jurkat T cells to AgNPs and Ag ions. Toxicol Lett 229:311–318

    Article  CAS  PubMed  Google Scholar 

  85. Iacoangeli A, Tiedge H (2013) Translational control at the synapse: role of RNA regulators. Trends Biochem Sci 38:47–55

    Article  CAS  PubMed  Google Scholar 

  86. Eom T, Muslimov IA, Tsokas P, Berardi V, Zhong J, Sacktor TC, Tiedge H (2014) Neuronal BC RNAs cooperate with eIF4B to mediate activity-dependent translational control. J Cell Biol 207:237–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wang H, Iacoangeli A, Popp S, Muslimov IA, Imataka H, Sonenberg N, Lomakin IB, Tiedge H (2002) Dendritic BC1 RNA: functional role in regulation of translation initiation. J Neurosci 22:10232–10241

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin D, Pestova TV, Hellen CUT, Tiedge H (2008) Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol Cell Biol 28:3008–3019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Muddashetty R, Khanam T, Kondrashov A, Bundman M, Iacoangeli A, Kremerskothen J, Duning K, Barnekow A, Huttenhofer A, Tiedge H, Brosius J (2002) Poly(A)-binding protein is associated with neuronal BC1 and BC200 ribonucleoprotein particles. J Mol Biol 321:433–445

    Article  CAS  PubMed  Google Scholar 

  90. Lin CJ, Nasr Z, Premsrirut PK, Porco JA, Jr., Hippo Y, Lowe SW, Pelletier J (2012) Targeting synthetic lethal interactions between Myc and the eIF4F complex impedes tumorigenesis. Cell Reports 1:325–333

  91. Soni A, Akcakanat A, Singh G, Luyimbazi D, Zheng Y, Kim D, Gonzalez-Angulo A, Meric-Bernstam F (2008) eIF4E knockdown decreases breast cancer cell growth without activating Akt signaling. Mol Cancer Ther 7:1782–1788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Oridate N, Kim HJ, Xu X, Lotan R (2005) Growth inhibition of head and neck squamous carcinoma cells by small interfering RNAs targeting eIF4E or cyclin D1 alone or combined with cisplatin. Cancer Biol Ther 4:318–323

    Article  CAS  PubMed  Google Scholar 

  93. Choi CH, Lee JS, Kim SR, Lee YY, Kim CJ, Lee JW, Kim TJ, Lee JH, Kim BG, Bae DS (2011) Direct inhibition of eIF4E reduced cell growth in endometrial adenocarcinoma. J Cancer Res Clin Oncol 137:463–469

    Article  CAS  PubMed  Google Scholar 

  94. Nasr Z, Robert F, Porco JA, Jr., Muller WJ, Pelletier J (2013) eIF4F suppression in breast cancer affects maintenance and progression. Oncogene 32:861–871

  95. Hayman TJ, Williams ES, Jamal M, Shankavaram UT, Camphausen K, Tofilon PJ (2012) Translation initiation factor eIF4E is a target for tumor cell radiosensitization. Cancer Res 72:2362–2372

    Article  CAS  PubMed  Google Scholar 

  96. Zhou FF, Yan M, Guo GF, Wang F, Qiu HJ, Zheng FM, Zhang Y, Liu Q, Zhu XF, Xia LP (2011) Knockdown of eIF4E suppresses cell growth and migration, enhances chemosensitivity and correlates with increase in Bax/Bcl-2 ratio in triple-negative breast cancer cells. Med Oncol 28:1302–1307

    Article  CAS  PubMed  Google Scholar 

  97. Cencic R, Robert F, Galicia-Vazquez G, Malina A, Ravindar K, Somaiah R, Pierre P, Tanaka J, Deslongchamps P, Pelletier J (2013) Modifying chemotherapy response by targeted inhibition of eukaryotic initiation factor 4A. Blood Cancer J 3:e128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, Pesce E, Ferrer I, Collavin L, Santoro C, Forrest AR, Carninci P, Biffo S, Stupka E, Gustincich S (2012) Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 491:454–457

    Article  CAS  PubMed  Google Scholar 

  99. Yao Y et al (2015) RNAe: an effective method for targeted protein translation enhancement by artificial non-coding RNA with SINEB2 repeat. Nucleic Acids Res 43:e58

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Hill JM, Roberts J, Loeb E, Khan A, MacLellan A, Hill RW (1967) l-Asparaginase therapy for leukemia and other malignant neoplasms. Remission in human leukemia. JAMA 202:882–888

    Article  CAS  PubMed  Google Scholar 

  101. Parmentier JH, Maggi M, Tarasco E, Scotti C, Avramis VI, Mittelman SD (2015) Glutaminase activity determines cytotoxicity of l-asparaginases on most leukemia cell lines. Leuk Res 39:757–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bunpo P, Dudley A, Cundiff JK, Cavener DR, Wek RC, Anthony TG (2009) GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent l-asparaginase. J Biol Chem 284:32742–32749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mader S, Lee H, Pause A, Sonenberg N (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol Cell Biol 15:4990–4997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Marcotrigiano J, Gingras AC, Sonenberg N, Burley SK (1999) Cap-dependent translation initiation in eukaryotes is regulated by a molecular mimic of eIF4G. Mol Cell 3:707–716

    Article  CAS  PubMed  Google Scholar 

  105. Fletcher CM, Wagner G (1998) The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci 7:1639–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Yang H, Li LW, Shi M, Wang JH, Xiao F, Zhou B, Diao LQ, Long XL, Liu XL, Xu L (2012) In vivo study of breast carcinoma radiosensitization by targeting eIF4E. Biochem Biophys Res Commun 423:878–883

    Article  CAS  PubMed  Google Scholar 

  107. Rousseau D, Gingras AC, Pause A, Sonenberg N (1996) The eIF4E-binding proteins 1 and 2 are negative regulators of cell growth. Oncogene 13:2415–2420

    CAS  PubMed  Google Scholar 

  108. Li S, Sonenberg N, Gingras AC, Peterson M, Avdulov S, Polunovsky VA, Bitterman PB (2002) Translational control of cell fate: availability of phosphorylation sites on translational repressor 4E-BP1 governs its proapoptotic potency. Mol Cell Biol 22:2853–2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiang H, Coleman J, Miskimins R, Miskimins WK (2003) Expression of constitutively active 4EBP-1 enhances p27Kip1 expression and inhibits proliferation of MCF7 breast cancer cells. Cancer Cell Int 3:2

    Article  PubMed  PubMed Central  Google Scholar 

  110. Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV (2004) Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 279:3327–3339

    Article  CAS  PubMed  Google Scholar 

  111. Herbert TP, Fahraeus R, Prescott A, Lane DP, Proud CG (2000) Rapid induction of apoptosis mediated by peptides that bind initiation factor eIF4E. Curr Biol 10:793–796

    Article  CAS  PubMed  Google Scholar 

  112. Ko SY, Guo H, Barengo N, Naora H (2009) Inhibition of ovarian cancer growth by a tumor-targeting peptide that binds eukaryotic translation initiation factor 4E. Clin Cancer Res 15:4336–4347

    Article  CAS  PubMed  Google Scholar 

  113. Zhou W, Quah ST, Verma CS, Liu Y, Lane DP, Brown CJ (2012) Improved eIF4E binding peptides by phage display guided design: plasticity of interacting surfaces yield collective effects. PLoS One 7:e47235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lama D, Quah ST, Verma CS, Lakshminarayanan R, Beuerman RW, Lane DP, Brown CJ (2013) Rational optimization of conformational effects induced by hydrocarbon staples in peptides and their binding interfaces. Sci Rep 3:3451

  115. Brown CJ, Lim JJ, Leonard T, Lim HC, Chia CS, Verma CS, Lane DP (2011) Stabilizing the eIF4G1 alpha-helix increases its binding affinity with eIF4E: implications for peptidomimetic design strategies. J Mol Biol 405:736–753

    Article  CAS  PubMed  Google Scholar 

  116. Brown CJ, Dastidar SG, See HY, Coomber DW, Ortiz-Lombardia M, Verma C, Lane DP (2010) Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting. J Mol Biol 395:871–883

    Article  CAS  PubMed  Google Scholar 

  117. Yang HS, Knies JL, Stark C, Colburn NH (2003) Pdcd4 suppresses tumor phenotype in JB6 cells by inhibiting AP-1 transactivation. Oncogene 22:3712–3720

    Article  CAS  PubMed  Google Scholar 

  118. Eberle J, Fecker LF, Bittner JU, Orfanos CE, Geilen CC (2002) Decreased proliferation of human melanoma cell lines caused by antisense RNA against translation factor eIF-4A1. Br J Cancer 86:1957–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Jansen AP, Camalier CE, Colburn NH (2005) Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 65:6034–6041

    Article  CAS  PubMed  Google Scholar 

  120. Kim YK, Minai-Tehrani A, Lee JH, Cho CS, Cho MH, Jiang HL (2013) Therapeutic efficiency of folated poly(ethylene glycol)-chitosan-graft-polyethylenimine-Pdcd4 complexes in H-ras12V mice with liver cancer. Int J Nanomed 8:1489–1498

    Google Scholar 

  121. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–2136

    Article  CAS  PubMed  Google Scholar 

  122. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18:350–359

    Article  CAS  PubMed  Google Scholar 

  123. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH (2008) Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283:1026–1033

    Article  CAS  PubMed  Google Scholar 

  124. Pause A, Methot N, Svitkin Y, Merrick WC, Sonenberg N (1994) Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J 13:1205–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cruz-Migoni A et al (2011) A Burkholderia pseudomallei toxin inhibits helicase activity of translation factor eIF4A. Science 334:821–824

    Article  CAS  PubMed  Google Scholar 

  126. Konicek BW et al (2011) Therapeutic inhibition of MAP kinase interacting kinase blocks eukaryotic initiation factor 4E phosphorylation and suppresses outgrowth of experimental lung metastases. Cancer Res 71:1849–1857

    Article  CAS  PubMed  Google Scholar 

  127. Robichaud N, Del Rincon SV, Huor B, Alain T, Petruccelli LA, Hearnden J, Goncalves C, Grotegut S, Spruck CH, Furic L, Larsson O, Muller WJ, Miller WH, Sonenberg N (2014) Phosphorylation of eIF4E promotes EMT and metastasis via translational control of SNAIL and MMP-3. Oncogene

  128. Cuesta R, Xi Q, Schneider RJ (2000) Adenovirus-specific translation by displacement of kinase Mnk1 from cap-initiation complex eIF4F. EMBO J 19:3465–3474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Cuesta R, Xi Q, Schneider RJ (2004) Structural basis for competitive inhibition of eIF4G-Mnk1 interaction by the adenovirus 100-kilodalton protein. J Virol 78:7707–7716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gromeier M, Lachmann S, Rosenfeld MR, Gutin PH, Wimmer E (2000) Intergeneric poliovirus recombinants for the treatment of malignant glioma. Proc Natl Acad Sci USA 97:6803–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gromeier M, Alexander L, Wimmer E (1996) Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc Natl Acad Sci USA 93:2370–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gromeier M, Bossert B, Arita M, Nomoto A, Wimmer E (1999) Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J Virol 73:958–964

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Merrill MK, Gromeier M (2006) The double-stranded RNA binding protein 76:NF45 heterodimer inhibits translation initiation at the rhinovirus type 2 internal ribosome entry site. J Virol 80:6936–6942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Merrill MK, Dobrikova EY, Gromeier M (2006) Cell-type-specific repression of internal ribosome entry site activity by double-stranded RNA-binding protein 76. J Virol 80:3147–3156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gradi A, Svitkin YV, Imataka H, Sonenberg N (1998) Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci USA 95:11089–11094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Dobrikova EY, Goetz C, Walters RW, Lawson SK, Peggins JO, Muszynski K, Ruppel S, Poole K, Giardina SL, Vela EM, Estep JE, Gromeier M (2012) Attenuation of neurovirulence, biodistribution, and shedding of a poliovirus:rhinovirus chimera after intrathalamic inoculation in Macaca fascicularis. J Virol 86:2750–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dobrikova EY, Broadt T, Poiley-Nelson J, Yang X, Soman G, Giardina S, Harris R, Gromeier M (2008) Recombinant oncolytic poliovirus eliminates glioma in vivo without genetic adaptation to a pathogenic phenotype. Mol Ther J Am Soc Gene Ther 16:1865–1872

    Article  CAS  Google Scholar 

  138. Goetz C, Everson RG, Zhang LC, Gromeier M (2010) MAPK signal-integrating kinase controls cap-independent translation and cell type-specific cytotoxicity of an oncolytic poliovirus. Mol Ther J Am Soc Gene Ther 18:1937–1946

    Article  CAS  Google Scholar 

  139. Mateyak MK, Kinzy TG (2013) ADP-ribosylation of translation elongation factor 2 by diphtheria toxin in yeast inhibits translation and cell separation. J Biol Chem 288:24647–24655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

JS is supported by a Charlotte and Leo Karassik Postdoctoral Fellowship. Work in the author’s lab on eIF4F is supported by a grant from the Canadian Institutes of Health Research [CIHR # G243873].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Pelletier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinberger, J., Chu, J., Maïga, R.I. et al. Developing anti-neoplastic biotherapeutics against eIF4F. Cell. Mol. Life Sci. 74, 1681–1692 (2017). https://doi.org/10.1007/s00018-016-2430-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-016-2430-8

Keywords

Navigation