Skip to main content
Log in

Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Exposure of plants to adverse environmental conditions leads to extensive transcriptional changes. Genome-wide approaches and gene function studies have revealed the importance of chromatin-level control in the regulation of stress-responsive gene expression. Advances in understanding chromatin modifications implicated in plant stress response and identifying proteins involved in chromatin-mediated transcriptional responses to stress are briefly presented in this review. We then highlight how chromatin-mediated gene expression changes can be coupled to the metabolic status of the cell, since many of the chromatin-modifying proteins involved in transcriptional regulation depend on cofactors and metabolites that are shared with enzymes in basic metabolism. Lastly, we discuss the stability and heritability of stress-induced chromatin changes and the potential of chromatin-based strategies for increasing stress tolerance of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tubiello FN, Soussana J-F, Howden SM (2007) Crop and pasture response to climate change. Proc Natl Acad Sci USA 104:19686–19690. doi:10.1073/pnas.0701728104

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Challinor AJ, Watson J, Lobell DB et al (2014) A meta-analysis of crop yield under climate change and adaptation. Nat Clim Chang 4:287–291. doi:10.1038/NCLIMATE2153

    Google Scholar 

  3. Gadjev I, Vanderauwera S, Gechev TS et al (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445. doi:10.1104/pp.106.078717

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Naika M, Shameer K, Mathew OK et al (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8. doi:10.1093/pcp/pcs185

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Borkotoky S, Saravanan V, Jaiswal A et al (2013) The arabidopsis stress responsive gene database. Int J Plant Genomics. doi:10.1155/2013/949564

    PubMed Central  PubMed  Google Scholar 

  6. Hauser MT, Aufsatz W, Jonak C, Luschnig C (2011) Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta Gene Regul Mech 1809:459–468. doi:10.1016/j.bbagrm.2011.03.007

    CAS  Google Scholar 

  7. Gentry M, Hennig L (2013) Remodelling chromatin to shape development of plants. Exp Cell Res 321:1–7. doi:10.1016/j.yexcr.2013.11.010

    Google Scholar 

  8. Stroud H, Do T, Du J et al (2014) Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol 21:64–72. doi:10.1038/nsmb.2735

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Zemach A, Kim MY, Hsieh PH et al (2013) The arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205. doi:10.1016/j.cell.2013.02.033

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Lindroth AM, Cao X, Jackson JP et al (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080. doi:10.1126/science.1059745

    CAS  PubMed  Google Scholar 

  11. Du J, Zhong X, Bernatavichute YV et al (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell 151:167–180. doi:10.1016/j.cell.2012.07.034

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. doi:10.1038/nrg2719

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Saze H, Tsugane K, Kanno T, Nishimura T (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53:766–784. doi:10.1093/pcp/pcs008

    CAS  PubMed  Google Scholar 

  14. Kohli RM, Zhang Y (2013) TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502:472–479. doi:10.1038/nature12750

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Agius F, Kapoor A, Zhu J-K (2006) Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc Natl Acad Sci USA 103:11796–11801. doi:10.1073/pnas.0603563103

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Gehring M, Huh JH, Hsieh TF et al (2006) DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124:495–506. doi:10.1016/j.cell.2005.12.034

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Penterman J, Zilberman D, Huh JH et al (2007) DNA demethylation in the Arabidopsis genome. Proc Natl Acad Sci USA 104:6752–6757. doi:10.1073/pnas.0701861104

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Qian W, Miki D, Zhang H et al (2012) A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 336:1445–1448. doi:10.1126/science.1219416

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201. doi:10.1016/j.cell.2006.08.003

    CAS  PubMed  Google Scholar 

  20. Zilberman D, Gehring M, Tran RK et al (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69. doi:10.1038/ng1929

    CAS  PubMed  Google Scholar 

  21. Dowen RH, Pelizzola M, Schmitz RJ et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci 109:E2183–E2191. doi:10.1073/pnas.1209329109

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Song Y, Ji D, Li S et al (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274. doi:10.1371/journal.pone.0041274

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Colaneri AC, Jones AM (2013) Genome-wide quantitative identification of DNA differentially methylated sites in Arabidopsis seedlings growing at different water potential. PLoS One 8:e59878. doi:10.1371/journal.pone.0059878

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Zhang X (2012) Dynamic differential methylation facilitates pathogen stress response in Arabidopsis. Proc Natl Acad Sci USA 109:12842–12843. doi:10.1073/pnas.1210292109

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhong L, Xu YH, Wang JB (2010) The effect of 5-azacytidine on wheat seedlings responses to NaCl stress. Biol Plant 54:753–756. doi:10.1007/s10535-010-0135-7

    CAS  Google Scholar 

  26. Gayacharan, Joel aJ (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19:379–387. doi:10.1007/s12298-013-0176-4

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Shen X, De Jonge J, Forsberg SKG et al (2014) Natural CMT2 variation is associated with genome-wide methylation changes and temperature seasonality. PLoS Genet 10:e1004842. doi:10.1371/journal.pgen.1004842

  28. Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420. doi:10.1146/annurev.arplant.043008.091939

    CAS  PubMed  Google Scholar 

  29. Waterborg JH (2011) Plant histone acetylation: in the beginning. Biochim Biophys Acta 1809:353–359. doi:10.1016/j.bbagrm.2011.02.005

    CAS  PubMed  Google Scholar 

  30. Feng J, Shen W-H (2014) Dynamic regulation and function of histone monoubiquitination in plants. Front Plant Sci 5:83. doi:10.3389/fpls.2014.00083

    PubMed Central  PubMed  Google Scholar 

  31. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705. doi:10.1016/j.cell.2007.02.005

    CAS  PubMed  Google Scholar 

  32. Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028. doi:10.1016/j.cell.2011.08.008

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Lee BM, Mahadevan LC (2009) Stability of histone modifications across mammalian genomes: implications for “epigenetic” marking. J Cell Biochem 108:22–34. doi:10.1002/jcb.22250

    CAS  PubMed  Google Scholar 

  34. Pandey R, Müller A, Napoli CA et al (2002) Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 30:5036–5055. doi:10.1093/nar/gkf660

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Luo M, Liu X, Singh P et al (2012) Chromatin modifications and remodeling in plant abiotic stress responses. Biochim Biophys Acta Gene Regul Mech 1819:129–136. doi:10.1016/j.bbagrm.2011.06.008

    CAS  Google Scholar 

  36. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. doi:10.1038/cr.2011.22

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Roudier F, Ahmed I, Bérard C et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938. doi:10.1038/emboj.2011.103

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Kwon CS, Lee D, Choi G, Chung W-I (2009) Histone occupancy-dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121. doi:10.1111/j.1365-313X.2009.03938.x

    CAS  PubMed  Google Scholar 

  39. Zhu J, Jeong JC, Zhu Y et al (2008) Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proc Natl Acad Sci USA 105:4945–4950. doi:10.1073/pnas.0801029105

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta 227:245–254. doi:10.1007/s00425-007-0612-1

    CAS  PubMed  Google Scholar 

  41. Kim J-M, To TK, Ishida J et al (2012) Transition of chromatin status during the process of recovery from drought stress in Arabidopsis thaliana. Plant Cell Physiol 53:847–856. doi:10.1093/pcp/pcs053

    CAS  PubMed  Google Scholar 

  42. Zong W, Zhong X, You J, Xiong L (2013) Genome-wide profiling of histone H3K4-tri-methylation and gene expression in rice under drought stress. Plant Mol Biol 81:175–188. doi:10.1007/s11103-012-9990-2

    CAS  PubMed  Google Scholar 

  43. Hark AT, Vlachonasios KE, Pavangadkar KA et al (2009) Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochim Biophys Acta Gene Regul Mech 1789:117–124. doi:10.1016/j.bbagrm.2008.09.003

    CAS  Google Scholar 

  44. Kaldis A, Tsementzi D, Tanriverdi O, Vlachonasios KE (2011) Arabidopsis thaliana transcriptional co-activators ADA2b and SGF29a are implicated in salt stress responses. Planta 233:749–762. doi:10.1007/s00425-010-1337-0

    CAS  PubMed  Google Scholar 

  45. Pavangadkar K, Thomashow MF, Triezenberg SJ (2010) Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis. Plant Mol Biol 74:183–200. doi:10.1007/s11103-010-9665-9

    CAS  PubMed  Google Scholar 

  46. Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133. doi:10.1111/j.1365-313X.2006.02678.x

    CAS  PubMed  Google Scholar 

  47. Chen L-T, Luo M, Wang Y-Y, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353. doi:10.1093/jxb/erq154

    PubMed Central  CAS  Google Scholar 

  48. Perrella G, Lopez-Vernaza MA, Carr C et al (2013) Histone deacetylase complex1 expression level titrates plant growth and abscisic acid sensitivity in Arabidopsis. Plant Cell 25:3491–3505. doi:10.1105/tpc.113.114835

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Tanaka M, Kikuchi A, Kamada H (2008) The Arabidopsis histone deacetylases HDA6 and HDA19 contribute to the repression of embryonic properties after germination. Plant Physiol 146:149–161. doi:10.1104/pp.107.111674

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Weber CM, Henikoff S (2014) Histone variants: dynamic punctuation in transcription. Genes Dev 28:672–682. doi:10.1101/gad.238873.114

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Zhu Y, Dong A, Shen W-H (2012) Histone variants and chromatin assembly in plant abiotic stress responses. Biochim Biophys Acta 1819:343–348. doi:10.1016/j.bbagrm.2011.07.012

    CAS  Google Scholar 

  52. Kumar SV, Wigge PA (2010) H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140:136–147. doi:10.1016/j.cell.2009.11.006

    CAS  PubMed  Google Scholar 

  53. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129. doi:10.1038/nature07324

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Coleman-Derr D, Zilberman D (2012) Deposition of histone variant H2A.Z within gene bodies regulates responsive genes. PLoS Genet 8:e1002988. doi:10.1371/journal.pgen.1002988

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Dickey JS, Redon CE, Nakamura AJ et al (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692. doi:10.1007/s00412-009-0234-4

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Seo J, Kim K, Chang D-Y et al (2014) Genome-wide reorganization of histone H2AX toward particular fragile sites on cell activation. Nucleic Acids Res 42:1016–1025. doi:10.1093/nar/gkt951

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Stroud H, Otero S, Desvoyes B et al (2012) Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:5370–5375. doi:10.1073/pnas.1203145109

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Wollmann H, Holec S, Alden K et al (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet 8:e1002658. doi:10.1371/journal.pgen.1002658

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Shu H, Nakamura M, Siretskiy A et al (2014) Arabidopsis replacement histone variant H3.3 occupies promoters of regulated genes. Genome Biol 15:R62. doi:10.1186/gb-2014-15-4-r62

    PubMed Central  PubMed  Google Scholar 

  60. Ingouff M, Berger F (2010) Histone3 variants in plants. Chromosoma 119:27–33. doi:10.1007/s00412-009-0237-1

    CAS  PubMed  Google Scholar 

  61. Nie X, Wang H, Li J et al (2014) The HIRA complex that deposits the histone H3.3 is conserved in Arabidopsis and facilitates transcriptional dynamics. Biol Open 3:794–802. doi:10.1242/bio.20148680

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Jerzmanowski A, Przewloka M, Grasser KD (2000) Linker histones and HMG1 proteins of higher plants. Plant Biol 2:586–597. doi:10.1055/s-2000-16648

    CAS  Google Scholar 

  63. Ascenzi R, Gantt JS (1997) A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol 34:629–641. doi:10.1023/A:1005886011722

    CAS  PubMed  Google Scholar 

  64. Scippa GS, Griffiths A, Chiatante D, Bray EA (2000) The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta 211:173–181. doi:10.1007/s004250000278

    CAS  PubMed  Google Scholar 

  65. Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008:420747. doi:10.1155/2008/420747

    PubMed Central  Google Scholar 

  66. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. doi:10.1146/annurev.biochem.77.062706.153223

    CAS  PubMed  Google Scholar 

  67. Billon P, Côté J (2012) Precise deposition of histone H2A.Z in chromatin for genome expression and maintenance. Biochim Biophys Acta 1819:290–302. doi:10.1016/j.bbagrm.2011.10.004

    CAS  Google Scholar 

  68. March-Díaz R, García-Domínguez M, Lozano-Juste J et al (2008) Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. Plant J 53:475–487. doi:10.1111/j.1365-313X.2007.03361.x

    PubMed  Google Scholar 

  69. Achard P, Cheng H, De Grauwe L et al (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94. doi:10.1126/science.1118642

    CAS  PubMed  Google Scholar 

  70. Mlynárová L, Nap J-P, Bisseling T (2007) The SWI/SNF chromatin-remodeling gene AtCHR12 mediates temporary growth arrest in Arabidopsis thaliana upon perceiving environmental stress. Plant J 51:874–885. doi:10.1111/j.1365-313X.2007.03185.x

    PubMed  Google Scholar 

  71. Archacki R, Buszewicz D, Sarnowski TJ et al (2013) BRAHMA ATPase of the SWI/SNF chromatin remodeling complex acts as a positive regulator of gibberellin-mediated responses in arabidopsis. PLoS One 8:e58588. doi:10.1371/journal.pone.0058588

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Han S-K, Sang Y, Rodrigues A et al (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24:4892–4906. doi:10.1105/tpc.112.105114

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Walley JW, Rowe HC, Xiao Y et al (2008) The chromatin remodeler SPLAYED regulates specific stress signaling pathways. PLoS Pathog 4:e1000237. doi:10.1371/journal.ppat.1000237

    PubMed Central  Google Scholar 

  74. Pecinka A, Dinh HQ, Baubec T et al (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129. doi:10.1105/tpc.110.078493

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Grasser KD (2003) Chromatin-associated HMGA and HMGB proteins: versatile co-regulators of DNA-dependent processes. Plant Mol Biol 53:281–295. doi:10.1023/B:PLAN.0000007002.99408.ba

    CAS  PubMed  Google Scholar 

  76. Ueda T, Yoshida M (2010) HMGB proteins and transcriptional regulation. Biochim Biophys Acta 1799:114–118. doi:10.1016/j.bbagrm.2009.11.005

    CAS  PubMed  Google Scholar 

  77. Stros M (2010) HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 1799:101–113. doi:10.1016/j.bbagrm.2009.09.008

    CAS  Google Scholar 

  78. Kwak KJ, Kim JY, Kim YO, Kang H (2007) Characterization of transgenic Arabidopsis plants overexpressing high mobility group B proteins under high salinity, drought or cold stress. Plant Cell Physiol 48:221–231. doi:10.1093/pcp/pcl057

    CAS  PubMed  Google Scholar 

  79. Lildballe DL, Pedersen DS, Kalamajka R et al (2008) The expression level of the chromatin-associated HMGB1 protein influences growth, stress tolerance, and transcriptome in Arabidopsis. J Mol Biol 384:9–21. doi:10.1016/j.jmb.2008.09.014

    CAS  PubMed  Google Scholar 

  80. Ju B-G, Lunyak VV, Perissi V et al (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312:1798–1802. doi:10.1126/science.1127196

    CAS  PubMed  Google Scholar 

  81. Simková K, Moreau F, Pawlak P et al (2012) Integration of stress-related and reactive oxygen species-mediated signals by Topoisomerase VI in Arabidopsis thaliana. Proc Natl Acad Sci USA 109:16360–16365. doi:10.1073/pnas.1202041109

    PubMed Central  PubMed  Google Scholar 

  82. Jain M, Tyagi AK, Khurana JP (2006) Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants. FEBS J 273:5245–5260. doi:10.1111/j.1742-4658.2006.05518.x

    CAS  PubMed  Google Scholar 

  83. Lu C, Thompson CB (2012) Metabolic regulation of epigenetics. Cell Metab 16:9–17. doi:10.1016/j.cmet.2012.06.001

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Liu J, Kim J, Oberdoerffer P (2013) Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front Genet 4:182. doi:10.3389/fgene.2013.00182

    PubMed Central  PubMed  Google Scholar 

  85. Wellen KE, Hatzivassiliou G, Sachdeva UM et al (2009) ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080. doi:10.1126/science.1164097

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Rajendran R, Garva R, Krstic-Demonacos M, Demonacos C (2011) Sirtuins: molecular traffic lights in the crossroad of oxidative stress, chromatin remodeling, and transcription. J Biomed Biotechnol 2011:368276. doi:10.1155/2011/368276

    PubMed Central  PubMed  Google Scholar 

  87. Huang L, Sun Q, Qin F et al (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144:1508–1519. doi:10.1104/pp.107.099473

    PubMed Central  CAS  Google Scholar 

  88. Wang C, Gao F, Wu J et al (2010) Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol 51:1291–1299. doi:10.1093/pcp/pcq087

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Cantó C, Sauve AA, Bai P (2013) Molecular aspects of medicine crosstalk between poly (ADP-ribose) polymerase and sirtuin enzymes. Mol Aspects Med 34:1168–1201. doi:10.1016/j.mam.2013.01.004

    PubMed  Google Scholar 

  90. Briggs AG, Bent AF (2011) Poly(ADP-ribosyl)ation in plants. Trends Plant Sci 16:372–380. doi:10.1016/j.tplants.2011.03.008

    CAS  PubMed  Google Scholar 

  91. Lamb RS, Citarelli M, Teotia S (2012) Functions of the poly(ADP-ribose) polymerase superfamily in plants. Cell Mol Life Sci 69:175–189. doi:10.1007/s00018-011-0793-4

    CAS  PubMed  Google Scholar 

  92. Luo X, Kraus WL (2012) On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev 26:417–432. doi:10.1101/gad.183509.111

    PubMed Central  PubMed  Google Scholar 

  93. De Block M, Verduyn C, De Brouwer D, Cornelissen M (2005) Poly(ADP-ribose) polymerase in plants affects energy homeostasis, cell death and stress tolerance. Plant J 41:95–106. doi:10.1111/j.1365-313X.2004.02277.x

    PubMed  Google Scholar 

  94. Bungard D, Fuerth BJ, Zeng P-Y et al (2010) Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 329:1201–1205. doi:10.1126/science.1191241

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Katoh Y, Ikura T, Hoshikawa Y et al (2011) Methionine adenosyltransferase II serves as a transcriptional corepressor of Maf oncoprotein. Mol Cell 41:554–566. doi:10.1016/j.molcel.2011.02.018

    CAS  PubMed  Google Scholar 

  96. Li W, Han Y, Tao F, Chong K (2011) Knockdown of SAMS genes encoding S-adenosyl-l-methionine synthetases causes methylation alterations of DNAs and histones and leads to late flowering in rice. J Plant Physiol 168:1837–1843. doi:10.1016/j.jplph.2011.05.020

    CAS  PubMed  Google Scholar 

  97. Furner I, Sheikh M, Collett C (1998) Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation. Genetics 149:651–662

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Rocha PSCF, Sheikh M, Melchiorre R et al (2005) The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing. Plant Cell 17:404–417. doi:10.1105/tpc.104.028332

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Mull L, Ebbs ML, Bender J (2006) A histone methylation-dependent DNA methylation pathway is uniquely impaired by deficiency in Arabidopsis S-adenosylhomocysteine hydrolase. Genetics 174:1161–1171. doi:10.1534/genetics.106.063974

    PubMed Central  CAS  Google Scholar 

  100. Jordan ND, West JP, Bottley A et al (2007) Transcript profiling of the hypomethylated hog1 mutant of Arabidopsis. Plant Mol Biol 65:571–586. doi:10.1007/s11103-007-9221-4

    CAS  PubMed  Google Scholar 

  101. Baubec T, Dinh HQ, Pecinka A et al (2010) Cooperation of multiple chromatin modifications can generate unanticipated stability of epigenetic States in Arabidopsis. Plant Cell 22:34–47. doi:10.1105/tpc.109.072819

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Shen X, Xiao H, Ranallo R et al (2003) Modulation of ATP-dependent chromatin-remodeling complexes by inositol polyphosphates. Science 299:112–114. doi:10.1126/science.1078068

    CAS  PubMed  Google Scholar 

  103. Latrasse D, Jégu T, Meng P-H et al (2013) Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Res 41:2907–2917. doi:10.1093/nar/gks1458

    PubMed Central  CAS  PubMed  Google Scholar 

  104. Yang W, Jiang D, Jiang J, He Y (2010) A plant-specific histone H3 lysine 4 demethylase represses the floral transition in Arabidopsis. Plant J 62:663–673. doi:10.1111/j.1365-313X.2010.04182.x

    CAS  PubMed  Google Scholar 

  105. Pecinka A, Mittelsten Scheid O (2012) Stress-induced chromatin changes: a critical view on their heritability. Plant Cell Physiol 53:801–808. doi:10.1093/pcp/pcs044

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Iwasaki M, Paszkowski J (2014) Identification of genes preventing transgenerational transmission of stress-induced epigenetic states. Proc Natl Acad Sci USA 111:8547–8552. doi:10.1073/pnas.1402275111

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Silveira AB, Trontin C, Cortijo S et al (2013) Extensive natural epigenetic variation at a de novo originated gene. PLoS Genet 9:e1003437. doi:10.1371/journal.pgen.1003437

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Becker C, Hagmann J, Müller J et al (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249. doi:10.1038/nature10555

    CAS  PubMed  Google Scholar 

  109. Boyko A, Kovalchuk I (2010) Transgenerational response to stress in Arabidopsis thaliana. Plant Signal Behav 5:995–998. doi:10.1371/journal.pone.0009514

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118. doi:10.1111/j.1469-8137.2009.03121.x

    CAS  PubMed  Google Scholar 

  111. Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS One 7:e30515. doi:10.1371/journal.pone.0030515

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Zhong S-H, Liu J-Z, Jin H et al (2013) Warm temperatures induce transgenerational epigenetic release of RNA silencing by inhibiting siRNA biogenesis in Arabidopsis. Proc Natl Acad Sci USA 110:9171–9176. doi:10.1073/pnas.1219655110

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Rasmann S, De Vos M, Casteel CL et al (2012) Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiol 158:854–863. doi:10.1104/pp.111.187831

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Derkacheva M, Steinbach Y, Wildhaber T et al (2013) Arabidopsis MSI1 connects LHP1 to PRC2 complexes. EMBO J 32:2073–2085. doi:10.1038/emboj.2013.145

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Kleinmanns JA, Schubert D (2014) Polycomb and Trithorax group protein-mediated control of stress responses in plants. Biol Chem 395:1291–1300. doi:10.1515/hsz-2014-0197

    CAS  PubMed  Google Scholar 

  116. Jaskiewicz M, Conrath U, Peterhänsel C (2011) Chromatin modification acts as a memory for systemic acquired resistance in the plant stress response. EMBO Rep 12:50–55. doi:10.1038/embor.2010.186

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Ding Y, Fromm M, Avramova Z (2012) Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat Commun 3:740. doi:10.1038/ncomms1732

    PubMed  Google Scholar 

  118. Ding Y, Liu N, Virlouvet L et al (2013) Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol 13:229. doi:10.1186/1471-2229-13-229

    PubMed Central  PubMed  Google Scholar 

  119. Boden SA, Kavanová M, Finnegan EJ, Wigge PA (2013) Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes. Genome Biol 14:R65. doi:10.1186/gb-2013-14-6-r65

    PubMed Central  PubMed  Google Scholar 

  120. Hauben M, Haesendonckx B, Standaert E et al (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci USA 106:20109–20114. doi:10.1073/pnas.0908755106

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Zhou J, Wang X, He K et al (2010) Genome-wide profiling of histone H3 lysine 9 acetylation and dimethylation in Arabidopsis reveals correlation between multiple histone marks and gene expression. Plant Mol Biol 72:585–595. doi:10.1007/s11103-009-9594-7

    CAS  PubMed  Google Scholar 

  122. Kim K-C, Lai Z, Fan B, Chen Z (2008) Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357–2371. doi:10.1105/tpc.107.055566

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the authors’ laboratories is supported by the French National Research Agency (Grant ANR 2010 JCJC 1205 01 to CL), the Swedish research councils VR and FORMAS and the Knut-and-Alice-Wallenberg foundation (to LH). We thank Dr. Ben Field and the anonymous reviewers for critical reading and helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Laloi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vriet, C., Hennig, L. & Laloi, C. Stress-induced chromatin changes in plants: of memories, metabolites and crop improvement. Cell. Mol. Life Sci. 72, 1261–1273 (2015). https://doi.org/10.1007/s00018-014-1792-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1792-z

Keywords

Navigation